
SecurityServicesSpecification

Version1.5,May2000



paid up,
ed ver-
pyright in
g con-

ire use
y be
at are
r protect-

 an
ent does

ble for
f profit
e Object
ze devel
 to indi-

raphic,
thout
Copyright 1995 AT&T Global Information Solutions Company
Copyright 1995 Digital Equipment Corporation
Copyright 1995 Expersoft Corporation
Copyright 1995 Groupe Bull
Copyright 1995 Hewlett-Packard Company
Copyright 1995 IBM (in collaboration with Taligent, Inc.)
Copyright 1995 International Computers Limited
Copyright 2000 Object Management Group, Inc.
Copyright 1997 Netscape Communications Corporation
Copyright 1997 Northern Telecom LImited
Copyright 1995 Novell, Inc.
Copyright 1995 Siemens Nixdorf Informationssysteme AG
Copyright 1995, 1997 SunSoft, Inc.
Copyright 1995 Tandem Computer Inc. (in collaboration with Odyssey Research Assoc., Inc.)
Copyright 1995 Tivoli Systems, Inc.
Copyright 1997 Visigenic Software, Inc.

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modifi
sion.  Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the co
the included material of any such copyright holder by reason of having used the specification set forth herein or havin
formed any computer software to the specification.

PATENT

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may requ
of an invention covered by patent rights.  OMG shall not be responsible for identifying patents for which a license ma
required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents th
brought to its attention.  OMG specifications are prospective and advisory only.  Prospective users are responsible fo
ing themselves against liability for infringement of patents.

NOTICE

The information contained in this document is subject to change without notice. The material in this document details
Object Management Group specification in accordance with the license and notices set forth on this page. This docum
not represent a commitment to implement any portion of this specification in any company's products.

WHILE THE INFORMATION IN THIS PUBLICATION  IS BELIEVED TO BE ACCURATE, THE OBJECT MANAGE-
MENT GROUP AND THE COMPANIES LISTED ABOVE  MAKE NO WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, WITH REGARD TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO ANY WARRANTY OF TITLE
OR OWNERSHIP,  IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR  PARTICU-
LAR PURPOSE OR USE. In no event shall The Object Management Group or any of the companies listed above be lia
errors contained herein or for indirect, incidental, special, consequential, reliance or cover damages, including loss os,
revenue, data or use, incurred by any user or any third party. The copyright holders listed above acknowledge that th
Management Group (acting itself or through its designees) is and shall at all times be the sole entity that may authori-
opers, suppliers and sellers of computer software to use certification marks, trademarks or other special designations
cate compliance with these materials. This document contains information which is protected by copyright. All Rights
Reserved. No part of this work covered by copyright herein may be reproduced or used in any form or by any means--g
electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems--wi
permission of the copyright owner.



n sub-
bject

RB,
n is a

ders to
RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions as set forth i
division (c) (1) (ii) of the Right in Technical Data and Computer Software Clause at DFARS 252.227.7013 OMG and O
Management are registered trademarks of the Object Management Group, Inc. Object Request Broker, OMG IDL, O
CORBA, CORBAfacilities, CORBAservices, and COSS are trademarks of the Object Management Group, Inc. X/Ope
trademark of X/Open Company Ltd.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage rea
report any ambiguities, inconsistencies, or inaccuracies they may find by completing the issue reporting form at
http://www.omg.org/library/issuerpt.htm.





Contents
vii

vii
vii

viii
iii

viii

viii
ix

ix

x
x
xi
xi

xi
xi
xi

xii
xii
iii

xiii
xiii
iii
xiii

xiii
Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

About This Document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Object Management Group  . . . . . . . . . . . . . . . . . . . . . . .
What is CORBA? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
X/Open  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Intended Audience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Need for Object Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
What Is an Object Service Specification?. . . . . . . . . . . . .

Associated OMG Documents. . . . . . . . . . . . . . . . . . . . . . . . . . .

Service Design Principles  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Build on CORBA Concepts . . . . . . . . . . . . . . . . . . . . . . .
Basic, Flexible Services . . . . . . . . . . . . . . . . . . . . . . . . . .
Generic Services. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Allow Local and Remote Implementations  . . . . . . . . . . .
Quality of Service is an Implementation Characteristic . .
Objects Often Conspire in a Service. . . . . . . . . . . . . . . . .
Use of Callback Interfaces . . . . . . . . . . . . . . . . . . . . . . . .
Assume No Global Identifier Spaces . . . . . . . . . . . . . . . .
Finding a Service is Orthogonal to Using It . . . . . . . . . . . x

Interface Style Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Use of Exceptions and Return Codes . . . . . . . . . . . . . . . .
Explicit Versus Implicit Operations . . . . . . . . . . . . . . . . . x
Use of Interface Inheritance . . . . . . . . . . . . . . . . . . . . . . .

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Security Service V1.5 May 2000 i



Contents

1-1

1-2
-2

1-2
-3
-3

1-4

1-8
-8

-10
-13

2-1

2-1
-1
-3
2-4
-7
11
-13
18
-21
27
28

-28
9
32
38

-39
41

-71
71
-73
73
-78
-84
-85
-93
00
1. Service Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.1 Introduction to Security . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.1.1 Why Security?  . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 What Is Security? . . . . . . . . . . . . . . . . . . . . . . .
1.1.3 Threats in a Distributed Object System  . . . . . . 1
1.1.4 Summary of Key Security Features  . . . . . . . . . 1
1.1.5 Goals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.2 Introduction to the Specification  . . . . . . . . . . . . . . . . . . . .
1.2.1 Document Overview . . . . . . . . . . . . . . . . . . . . . 1
1.2.2 CORBA Security and Secure Interoperability

Feature Packages  . . . . . . . . . . . . . . . . . . . . . . . 1
1.2.3 Feature Packages and Modules . . . . . . . . . . . . . 1

2.  Interfaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.1 Security Reference Model  . . . . . . . . . . . . . . . . . . . . . . . . .
2.1.1 Definition of a Security Reference Model  . . . . 2
2.1.2 Principals and Their Security Attributes . . . . . . 2
2.1.3 Secure Object Invocations  . . . . . . . . . . . . . . . .
2.1.4 Access Control Model  . . . . . . . . . . . . . . . . . . . 2
2.1.5 Auditing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-
2.1.6 Delegation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.1.7 Non-repudiation . . . . . . . . . . . . . . . . . . . . . . . . 2-
2.1.8 Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.1.9 Security Management and Administration . . . . 2-
2.1.10 Implementing the Model. . . . . . . . . . . . . . . . . . 2-

2.2 Security Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2.1 Different Users’ View of the Security Model . . 2-2
2.2.2 Structural Model . . . . . . . . . . . . . . . . . . . . . . . . 2-
2.2.3 Security Technology . . . . . . . . . . . . . . . . . . . . . 2-
2.2.4 Basic Protection and Communications . . . . . . . 2
2.2.5 Security Object Models  . . . . . . . . . . . . . . . . . . 2-

2.3 Application Developer’s Interfaces  . . . . . . . . . . . . . . . . . . 2
2.3.1 Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-
2.3.2 Finding Security Features . . . . . . . . . . . . . . . . . 2
2.3.3 Authentication of Principals . . . . . . . . . . . . . . . 2-
2.3.4 The Credentials Object . . . . . . . . . . . . . . . . . . . 2
2.3.5 The ReceivedCredentials Object. . . . . . . . . . . . 2
2.3.6 Operations on Object Reference . . . . . . . . . . . . 2
2.3.7 Security Operations on Current  . . . . . . . . . . . . 2
2.3.8 Security Audit. . . . . . . . . . . . . . . . . . . . . . . . . . 2-1
ii Security Service V1.5 May 2000



Contents

3
103
06
08

116
117
18

18
119
31
35
40

143
44

49
168

3-1

3-1
-1
-2
3-7
ity

13
13
-14
15

15
-16

21
23
-26
-30

2

33
2.3.9 Administering Security Policy . . . . . . . . . . . . . 2-10
2.3.10 Access Control . . . . . . . . . . . . . . . . . . . . . . . . . 2-
2.3.11 Delegation Facilities . . . . . . . . . . . . . . . . . . . . . 2-1
2.3.12 Non-repudiation . . . . . . . . . . . . . . . . . . . . . . . . 2-1

2.4 Administrator’s Interfaces  . . . . . . . . . . . . . . . . . . . . . . . . . 2-
2.4.1 Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-
2.4.2 Domain Management . . . . . . . . . . . . . . . . . . . . 2-1
2.4.3 Security Policies Introduction. . . . . . . . . . . . . . 2-1
2.4.4 Access Policies . . . . . . . . . . . . . . . . . . . . . . . . . 2-
2.4.5 Audit Policies . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1
2.4.6 Secure Invocation and Delegation Policies . . . . 2-1
2.4.7 Non-repudiation Policy Management . . . . . . . . 2-1

2.5 Implementor’s Security Interfaces . . . . . . . . . . . . . . . . . . . 2-
2.5.1 Security Interceptors. . . . . . . . . . . . . . . . . . . . . 2-1
2.5.2 Implementation-Level Security Object

Interfaces  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1
2.5.3 Replaceable Security Services  . . . . . . . . . . . . . 2-

3.  Protocols and Mechanisms. . . . . . . . . . . . . . . . . . . . . . . . . .

3.1 Security Interoperability Protocols. . . . . . . . . . . . . . . . . . .
3.1.1 Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.1.2 Interoperability Model  . . . . . . . . . . . . . . . . . . . 3
3.1.3 Protocol Enhancements  . . . . . . . . . . . . . . . . . .
3.1.4 CORBA Interoperable Object Reference with Secur

3-7
3.1.5 Common Secure Interoperability Levels. . . . . . 3-
3.1.6 Key Distribution Types . . . . . . . . . . . . . . . . . . . 3-
3.1.7  Security Mechanisms Hosted on SECIOP . . . . 3
3.1.8 Security Mechanisms Hosted Directly on IIOP 3-
3.1.9 Choices of Protocols, Cryptographic Profiles

and Key Technologies. . . . . . . . . . . . . . . . . . . . 3-
3.1.10 Common Secure Interoperability Requirements 3
3.1.11 Relation to CORBA Security Facilities and

Interfaces  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-
3.1.12 Security Functionality. . . . . . . . . . . . . . . . . . . . 3-
3.1.13 Model for Use and Contents of Credentials  . . . 3
3.1.14 CORBA Interfaces . . . . . . . . . . . . . . . . . . . . . . 3
3.1.15 Support for CORBA Security Facilities and

Extensibility . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3
3.1.16 Security Replaceability for ORB Security

Implementors  . . . . . . . . . . . . . . . . . . . . . . . . . . 3-
Security Service V1.5 May 2000 iii



Contents

-34
35
-36
-42

47

-54
-54
-55
-55
56
-57
58

58
-60

-61
61
62
63

3-64
64
65
65
-65

-67
-67
68
-69
-69
69
0

72
73
73
74
-74
75
76
-80
3.2 Secure Inter-ORB Protocol (SECIOP) . . . . . . . . . . . . . . . . 3
3.2.1 Architectural Assumptions . . . . . . . . . . . . . . . . 3-
3.2.2 SECIOP Sequencing Layer. . . . . . . . . . . . . . . . 3
3.2.3 SECIOP Context Management Layer . . . . . . . . 3
3.2.4 SECIOP Context Management Finite State

Machine Tables. . . . . . . . . . . . . . . . . . . . . . . . . 3-

3.3 The SECIOP Hosted CSI Protocols . . . . . . . . . . . . . . . . . . 3
3.3.1 IOR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.3.2 Mechanism Tags . . . . . . . . . . . . . . . . . . . . . . . . 3
3.3.3 Association Options . . . . . . . . . . . . . . . . . . . . . 3
3.3.4 Cryptographic Profiles  . . . . . . . . . . . . . . . . . . . 3-
3.3.5 Security Name  . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.3.6 Security Administration Domains. . . . . . . . . . . 3-
3.3.7 Mapping of Common Elements to the SECIOP

Protocol  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-
3.3.8 CSI Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3.4 SPKM Protocol  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.4.1  Cryptographic Profiles . . . . . . . . . . . . . . . . . . . 3-
3.4.2 IOR Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . 3-
3.4.3 Using SPKM for SECIOP. . . . . . . . . . . . . . . . . 3-

3.5 GSS Kerberos Protocol. . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.5.1 Cryptographic Profiles  . . . . . . . . . . . . . . . . . . . 3-
3.5.2 Mandatory and Optional Cryptographic Profiles 3-
3.5.3 IOR Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . 3-
3.5.4 SECIOP Tokens  . . . . . . . . . . . . . . . . . . . . . . . . 3

3.6 CSI-ECMA Protocol  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.6.1 Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.6.2 Security Attributes  . . . . . . . . . . . . . . . . . . . . . . 3-
3.6.3 Target Access Enforcement Function . . . . . . . . 3
3.6.4 Basic and Dialogue Keys  . . . . . . . . . . . . . . . . . 3
3.6.5 Key Distribution Schemes  . . . . . . . . . . . . . . . . 3-
3.6.6 Cryptographic Algorithms and Profiles  . . . . . . 3-7
3.6.7 PAC Protection and Delegation - Outline . . . . . 3-
3.6.8 PPID Method  . . . . . . . . . . . . . . . . . . . . . . . . . . 3-
3.6.9 PV/CV Delegation Method. . . . . . . . . . . . . . . . 3-
3.6.10 Mechanism Identifiers and IOR Encoding  . . . . 3-
3.6.11 Security Names. . . . . . . . . . . . . . . . . . . . . . . . . 3
3.6.12 SECIOP Tokens When Using CSI-ECMA . . . . 3-
3.6.13 Initial Context Token  . . . . . . . . . . . . . . . . . . . . 3-
3.6.14 TargetResultToken  . . . . . . . . . . . . . . . . . . . . . . 3
iv Security Service V1.5 May 2000



Contents

-80
-81

-83
84

6
86
-87
-87
-88
89
-92
93
94
95
95
7

01
02

03
03
04
04
04

05
05
05
10

-1
3.6.15 ErrorToken . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.6.16 Per Message Tokens . . . . . . . . . . . . . . . . . . . . . 3
3.6.17 ContextDeleteToken . . . . . . . . . . . . . . . . . . . . . 3
3.6.18 Security Attributes  . . . . . . . . . . . . . . . . . . . . . . 3-
3.6.19 Privilege and Miscellaneous Attribute

Definitions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-8
3.6.20  Qualifier Attributes  . . . . . . . . . . . . . . . . . . . . . 3-
3.6.21 Target Names  . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.6.22 PAC Format  . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.6.23 Common Contents fields. . . . . . . . . . . . . . . . . . 3
3.6.24  Specific Certificate Contents for PACs  . . . . . . 3-
3.6.25  Check Value. . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.6.26 Basic Key Distribution . . . . . . . . . . . . . . . . . . . 3-
3.6.27 Keying Information Syntax. . . . . . . . . . . . . . . . 3-
3.6.28 Summary of Key Distribution Schemes . . . . . . 3-
3.6.29  CSI-ECMA Secret Key Mechanism. . . . . . . . . 3-
3.6.30 CSI-ECMA Hybrid Mechanism . . . . . . . . . . . . 3-9
3.6.31 CSI-ECMA Public Mechanism. . . . . . . . . . . . . 3-1
3.6.32 Dialogue Key Block . . . . . . . . . . . . . . . . . . . . . 3-1

3.7 Integrating SSL with CORBA Security  . . . . . . . . . . . . . . . 3-1
3.7.1 Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1
3.7.2 Cryptographic Profiles  . . . . . . . . . . . . . . . . . . . 3-1
3.7.3 IOR Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1
3.7.4 Relation to SECIOP . . . . . . . . . . . . . . . . . . . . . 3-1

3.8 DCE-CIOP with Security . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1
3.8.1 Goals of Secure DCE-CIOP . . . . . . . . . . . . . . . 3-1
3.8.2 Secure DCE-CIOP Overview . . . . . . . . . . . . . . 3-1
3.8.3 DCE RPC Security Services . . . . . . . . . . . . . . . 3-1

Appendix A -  References . . . . . . . . . . . . . . . . . . . . . . . . . . . A

 Appendix B - Consolidated OMG IDL . . . . . . . . . . . . . . . . B-1

 Appendix C - Relationship to Other Services. . . . . . . . . . . C-1

 Appendix D - Conformance Details and Statement . . . . . . D-1

 Appendix E  - Guidelines for a Trustworthy System . . . . . E-1

 Appendix F - Facilities Not In This Specification. . . . . . . . F-1

 Appendix G - Interoperability Guidelines  . . . . . . . . . . . . . G-1
Security Service V1.5 May 2000 v



Contents
vi Security Service V1.5 May 2000



Preface
ent
nd
td
s.

s at
l
by
and

rted
and
nted

ide a
,
ous
p a

d.
About This Document

Under the terms of the collaboration between OMG and X/Open Co Ltd, this docum
is a candidate for endorsement by X/Open, initially as a Preliminary Specification a
later as a full CAE Specification. The collaboration between OMG and X/Open Co L
ensures joint review and cohesive support for emerging object-based specification

X/Open Preliminary Specifications undergo close scrutiny through a review proces
X/Open before publication and are inherently stable specifications. Upgrade to ful
CAE Specification, after a reasonable interval, takes place following further review
X/Open. This further review considers the implementation experience of members
the full implications of conformance and branding.

Object Management Group

The Object Management Group, Inc. (OMG) is an international organization suppo
by over 800 members, including information system vendors, software developers
users. Founded in 1989, the OMG promotes the theory and practice of object-orie
technology in software development. The organization's charter includes the
establishment of industry guidelines and object management specifications to prov
common framework for application development. Primary goals are the reusability
portability, and interoperability of object-based software in distributed, heterogene
environments. Conformance to these specifications will make it possible to develo
heterogeneous applications environment across all major hardware platforms and
operating systems.

OMG's objectives are to foster the growth of object technology and influence its
direction by establishing the Object Management Architecture (OMA). The OMA
provides the conceptual infrastructure upon which all OMG specifications are base
Security Service V1.5 May 2000 vii



ted,
y
ject
nd

ing

st of

the

ed

lpful

sists

ive

o
n

,
tem
y.
What is CORBA?

The Common Object Request Broker Architecture (CORBA), is the Object
Management Group's answer to the need for interoperability among the rapidly
proliferating number of hardware and software products available today. Simply sta
CORBA allows applications to communicate with one another no matter where the
are located or who has designed them. CORBA 1.1 was introduced in 1991 by Ob
Management Group (OMG) and defined the Interface Definition Language (IDL) a
the Application Programming Interfaces (API) that enable client/server object
interaction within a specific implementation of an Object Request Broker (ORB).
CORBA 2.0, adopted in December of 1994, defines true interoperability by specify
how ORBs from different vendors can interoperate.

X/Open

X/Open is an independent, worldwide, open systems organization supported by mo
the world's largest information system suppliers, user organizations and software
companies. Its mission is to bring to users greater value from computing, through
practical implementation of open systems.

Intended Audience

The specifications described in this manual are aimed at software designers and
developers who want to produce applications that comply with OMG standards for
object services; the benefits of compliance are outlined in the following section, “Ne
for Object Services.”

Need for Object Services

To understand how Object Services benefit all computer vendors and users, it is he
to understand their context within OMG’s vision of object management. The key to
understanding the structure of the architecture is the Reference Model, which con
of the following components:

• Object Request Broker, which enables objects to transparently make and rece
requests and responses in a distributed environment. It is the foundation for
building applications from distributed objects and for interoperability between
applications in hetero- and homogeneous environments. The architecture and
specifications of the Object Request Broker are described inCORBA: Common
Object Request Broker Architecture and Specification.

• Object Services, a collection of services (interfaces and objects) that support
basic functions for using and implementing objects. Services are necessary t
construct any distributed application and are always independent of applicatio
domains.

• Common Facilities, a collection of services that many applications may share
but which are not as fundamental as the Object Services. For instance, a sys
management or electronic mail facility could be classified as a common facilit
viii Security Service V1.5 May 2000



s, an
antic

en
es,
s
t

the

The
es a

are
des
are

ct-

y

The Object Request Broker, then, is the core of the Reference Model. Nevertheles
Object Request Broker alone cannot enable interoperability at the application sem
level. An ORB is like a telephone exchange: it provides the basic mechanism for
making and receiving calls but does not ensure meaningful communication betwe
subscribers. Meaningful, productive communication depends on additional interfac
protocols, and policies that are agreed upon outside the telephone system, such a
telephones, modems and directory services. This is equivalent to the role of Objec
Services.

What Is an Object Service Specification?

A specification of an Object Service usually consists of a set of interfaces and a
description of the service’s behavior. The syntax used to specify the interfaces is
OMG Interface Definition Language (OMG IDL). The semantics that specify a
services’s behavior are, in general, expressed in terms of the OMG Object Model.
OMG Object Model is based on objects, operations, types, and subtyping. It provid
standard, commonly understood set of terms with which to describe a service’s
behavior.

(For detailed information about the OMG Reference Model and the OMG Object
Model, refer to theObject Management Architecture Guide).

Associated OMG Documents

The CORBA documentation is organized as follows:

• Object Management Architecture Guidedefines the OMG’s technical objectives and
terminology and describes the conceptual models upon which OMG standards
based. It defines the umbrella architecture for the OMG standards. It also provi
information about the policies and procedures of OMG, such as how standards
proposed, evaluated, and accepted.

• CORBA Platform Technologies

• CORBA: Common Object Request Broker Architecture and Specificationcontains
the architecture and specifications for the Object Request Broker.

• CORBA Languages, a collection of language mapping specifications. See the
individual language mapping specifications.

• CORBA Services,a collection of specifications for OMG’s Object Services. See
the individual service specifications.

• CORBA Facilities,a collection of specifications for OMG’s Common Facilities.
See the individual facility specifications.

• CORBA Domain Technologies

• CORBA Manufacturing, a collection of specifications that relate to the
manufacturing industry. This group of specifications defines standardized obje
oriented interfaces between related services and functions.

• CORBA Med, a collection of specifications that relate to the healthcare industr
and represents vendors, healthcare providers, payers, and end users.
Security Service V1.5 Associated OMG Documents May 2000 ix



n

t

d,
dards
(The

ns,

of

P-
.

• CORBA Finance, a collection of specifications that target a vitally important
vertical market: financial services and accounting. These important applicatio
areas are present in virtually all organizations: including all forms of monetary
transactions, payroll, billing, and so forth.

• CORBA Telecoms, a collection of specifications that relate to the OMG-complian
interfaces for telecommunication systems.

The OMG collects information for each book in the documentation set by issuing
Requests for Information, Requests for Proposals, and Requests for Comment an
with its membership, evaluating the responses. Specifications are adopted as stan
only when representatives of the OMG membership accept them as such by vote.
policies and procedures of the OMG are described in detail in theObject Management
Architecture Guide.)

To obtain print-on-demand books in the documentation set or other OMG publicatio
contact the Object Management Group, Inc. at:

OMG Headquarters
250 First Avenue, Suite 201

Needham, MA 02494
USA

Tel: +1-781-444-0404
Fax: +1-781-444-0320

pubs@omg.org
http://www.omg.org

Service Design Principles

Build on CORBA Concepts

The design of each Object Service uses and builds on CORBA concepts:

• Separation of interface and implementation

• Object references are typed by interfaces

• Clients depend on interfaces, not implementations

• Use of multiple inheritance of interfaces

• Use of subtyping to extend, evolve and specialize functionality

Other related principles that the designs adhere to include:

• Assume good ORB and Object Services implementations. Specifically, it is
assumed that CORBA-compliant ORB implementations are being built that
support efficient local and remote access to “fine-grain” objects and have
performance characteristics that place no major barriers to the pervasive use
distributed objects for virtually all service and application elements.

• Do not build non-type properties into interfaces

A discussion and rationale for the design of object services was included in the H
SunSoft response to the OMG Object Services RFI (OMG TC Document 92.2.10)
x Security Service V1.5 May 2000



ey
y
rful

ay
eal

lient
ent
cally

that
rver
on

es
ple,

ces
rules

ts.

rent
s

Basic, Flexible Services

The services are designed to do one thing well and are only as complicated as th
need to be. Individual services are by themselves relatively simple yet they can, b
virtue of their structuring as objects, be combined together in interesting and powe
ways.

For example, the event and life cycle services, plus a future relationship service, m
play together to support graphs of objects. Object graphs commonly occur in the r
world and must be supported in many applications. A functionally-rich Folder
compound object, for example, may be constructed using the life cycle, naming,
events, and future relationship services as “building blocks.”

Generic Services

Services are designed to be generic in that they do not depend on the type of the c
object nor, in general, on the type of data passed in requests. For example, the ev
channel interfaces accept event data of any type. Clients of the service can dynami
determine the actual data type and handle it appropriately.

Allow Local and Remote Implementations

In general the services are structured as CORBA objects with OMG IDL interfaces
can be accessed locally or remotely and which can have local library or remote se
styles of implementations. This allows considerable flexibility as regards the locati
of participating objects. So, for example, if the performance requirements of a
particular application dictate it, objects can be implemented to work with a Library
Object Adapter that enables their execution in the same process as the client.

Quality of Service is an Implementation Characteristic

Service interfaces are designed to allow a wide range of implementation approach
depending on the quality of service required in a particular environment. For exam
in the Event Service, an event channel can be implemented to provide fast but
unreliable delivery of events or slower but guaranteed delivery. However, the interfa
to the event channel are the same for all implementations and all clients. Because
are not wired into a complex type hierarchy, developers can select particular
implementations as building blocks and easily combine them with other componen

Objects Often Conspire in a Service

Services are typically decomposed into several distinct interfaces that provide diffe
views for different kinds of clients of the service. For example, the Event Service i
composed ofPushConsumer, PullSupplierandEventChannelinterfaces. This
simplifies the way in which a particular client uses a service.
Security Service V1.5 Service Design Principles May 2000 xi



gle

to
cts

ents

aces

g
th an

uest
e

s

bject
t to
A particular service implementation can support the constituent interfaces as a sin
CORBA object or as a collection of distinct objects. This allows considerable
implementation flexibility. A client of a service may use a different object reference
communicate with each distinct service function. Conceptually, these “internal” obje
conspireto provide the complete service.

As an example, in the Event Service an event channel can provide bothPushConsumer
andEventChannelinterfaces for use by different kinds of client. A particular client
sends a request not to a single “event channel” object but to an object that implem
either thePushConsumerandEventChannelinterface. Hidden to all the clients, these
objects interact to support the service.

The service designs also use distinct objects that implement specific service interf
as the means to distinguish and coordinate different clients without relying on the
existence of an object equality test or some special way of identifying clients. Usin
the event service again as an example, when an event consumer is connected wi
event channel, a new object is created that supports thePullSupplierinterface. An
object reference to this object is returned to the event consumer which can then req
events by invoking the appropriate operation on the new “supplier” object. Becaus
each client uses a different object reference to interact with the event channel, the
event channel can keep track of and manage multiple simultaneous clients. This i
shown graphically in the figure below.

An event channel as a collection of objects conspiring to manage multiple simultaneous
consumer clients.

The graphical notation shown in the above figure is used throughout the service
specifications. An arrow with a vertical bar is used to show that the target object
supports the interface named below the arrow and that clients holding an object
reference to it of this type can invoke operations. In shorthand, one says that the o
reference (held by the client) supports the interface. The arrow points from the clien
the target (server) object.

event channel

consumer

PullConsumer

PullSupplier

consumer

PullConsumer

PullSupplier

supplier

PushSupplier

PushConsumer
xii Security Service V1.5 May 2000



r
re
iple

a

o a

n

ext.

within

ices

s

to be

l

tion
A blob (misshapen circle) delineates a conspiracy of one or more objects. In othe
words, it corresponds to a conceptual object that may be composed of one or mo
CORBA objects that together provide some coordinated service to potentially mult
clients making requests using different object references.

Use of Callback Interfaces

Services often employ callback interfaces. Callback interfaces are interfaces that
client object is required to support to enable a service tocall backto it to invoke some
operation. The callback may be, for example, to pass back data asynchronously t
client.

Callback interfaces have two major benefits:

• They clearly define how a client object participates in a service.

• They allow the use of the standard interface definition (OMG IDL) and operatio
invocation (object reference) mechanisms.

Assume No Global Identifier Spaces

Several services employ identifiers to label and distinguish various elements. The
service designs do not assume or rely on any global identifier service or global id
spaces in order to function. The scope of identifiers is always limited to some cont
For example, in the naming service, the scope of names is the particular naming
context object.

In the case where a service generates ids, clients can assume that an id is unique
its scope but should not make any other assumption.

Finding a Service is Orthogonal to Using It

Finding a service is at a higher level and orthogonal to using a service. These serv
do not dictate a particular approach. They do not, for example, mandate that all
services must be found via the naming service. Because services are structured a
objects there does not need to be a special way of finding objects associated with
services - general purpose finding services can be used. Solutions are anticipated
application and policy specific.

Interface Style Consistency

Use of Exceptions and Return Codes

Throughout the services, exceptions are used exclusively for handling exceptiona
conditions such as error returns. Normal return codes are passed back via output
parameters. An example of this is the use of a DONE return code to indicate itera
completion.
Security Service V1.5 Interface Style Consistency May 2000 xiii



eter

de

nts
Explicit Versus Implicit Operations

Operations are always explicit rather than implied (e.g., by a flag passed as a param
value to some “umbrella” operation). In other words, there is always a distinct
operation corresponding to each distinct function of a service.

Use of Interface Inheritance

Interface inheritance (subtyping) is used whenever one can imagine that client co
should depend on less functionality than the full interface. Services are often
partitioned into several unrelated interfaces when it is possible to partition the clie
into different roles. For example, an administrative interface is often unrelated and
distinct in the type system from the interface used by “normal” clients.

Acknowledgments

The following companies submitted and/or supported parts of theSecurity Service
specification:

• AT&T Global Information Solutions Company

• Digital Equipment Corporation

• Expersoft Corporation

• Groupe Bull

• Hewlett-Packard Company

• IBM (in collaboration with Taligent, Inc.)

• International Computers Limited

• Netscape Communications Corporation

• Northern Telecom LImited

• Novell, Inc.

• Siemens Nixdorf Informationssysteme AG

• SunSoft, Inc.

• Tandem Computer Inc. (in collaboration with Odyssey Research Assoc., Inc.)

• Tivoli Systems, Inc.

• Visigenic Software, Inc.
xiv Security Service V1.5 May 2000



ServiceDescription 1
hich
intly
e
ry
This specification incorporates material that was adopted in three separate
specifications related to security:

• CORBA Security Rev 1.1 (formal/97-12-22)

• Common Secure Interoperability 1.0 (orbos/96-06-20)

• CORBAsecurity/SSL Interoperability (orbos/97-02-04)

All these documents are therefore superseded by this chapter.

Associated with this document, are documents ptc/98-01-03, and ptc/98-01-04, w
contain associated changes to the CORBA Core that have been recommended jo
by the Security RTF and the Core RTF. Also associated with this document are th
outputs of the C++ and Java language mapping RTFs that had co-terminus delive
dates with the Security 1.2 RTF.

Contents

This chapter contains the following topics, separated into sections.

Topic Page

“Introduction to Security” 1-2

“Introduction to the Specification” 1-8
Security Service V1.5 May 2000 1-1



1

eir
racy

such
well
gain

ional

not

s.

e,

ere
te
f

t are
n

1.1 Introduction to Security

1.1.1 Why Security?

Enterprises are increasingly dependent on their information systems to support th
business activities. Compromise of these systems either in terms of loss or inaccu
of information or competitors gaining access to it can be extremely costly to the
enterprise.

Security breaches, which compromise information systems, are becoming more
frequent and varied. These may often be due to accidental misuse of the system,
as users accidentally gaining unauthorized access to information. Commercial as
as government systems may also be subject to malicious attacks (for example, to
access to sensitive information).

Distributed systems are more vulnerable to security breaches than the more tradit
systems, as there are more places where the system can be attacked. Therefore,
security is needed in CORBA systems, which takes account of their inherent
distributed nature.

1.1.2 What Is Security?

Security protects an information system from unauthorized attempts to access
information or interfere with its operation. It is concerned with:

• Confidentiality . Information is disclosed only to users authorized to access it.

• Integrity . Information is modified only by users who have the right to do so, and
only in authorized ways. It is transferred only between intended users and in
intended ways.

• Accountability. Users are accountable for their security-relevant actions. A
particular case of this is non-repudiation, where responsibility for an action can
be denied.

• Availability . Use of the system cannot be maliciously denied to authorized user

Availability is often the responsibility of other OMA components such as archive/
restore services, or of underlying network or operating systems services. Therefor
this specification does not address all availability requirements.

Security is enforced using security functionality as described below. In addition, th
are constraints on how the system is constructed. For example, to ensure adequa
separation of objects so that they don't interfere with each other and separation o
users’ duties so that the damage an individual user can do is limited.

Security is pervasive, affecting many components of a system, including some tha
not directly security related. Also, specialist components, such as an authenticatio
service, provide services that are specific to security.
1-2 Security Service V1.5 May 2000



1

mount
ets,
ainst
are in
rt a

t user
a
act

.

tion

ms
t

or
e

E,
The assets of an enterprise need to be protected against perceived threats. The a
of protection the enterprise is prepared to pay for depends on the value of the ass
and the threats that need to be countered. The security policy needed to protect ag
these threats may also depend on the environment and how vulnerable the assets
this environment. This document specifies a security architecture which can suppo
variety of security policies to meet different needs.

1.1.3 Threats in a Distributed Object System

The CORBA security specification is designed to allow implementations to provide
protection against the following:

• An authorized user of the system gaining access to information that should be
hidden from him.

• A user masquerading as someone else, and so obtaining access to whatever tha
is authorized to do, so that actions are being attributed to the wrong person. In
distributed system, a user may delegate his rights to other objects, so they can
on his behalf. This adds the threat of rights being delegated too widely, again
causing a threat of unauthorized access.

• Security controls being bypassed.

• Eavesdropping on a communication line, so gaining access to confidential data

• Tampering with communication between objects - modifying, inserting, and
deleting items.

• Lack of accountability due, for example, to inadequate identification of users.

Note that some of this protection is dependent on the CORBA security implementa
being constructed in the right way according to assurance criteria (as specified in
Appendix D, “Guidelines for a Trustworthy System”) and using security mechanis
with the right characteristics. Conformance to the CORBA security interfaces is no
enough to ensure that this protection is provided, just as conformance to the
transactional interfaces (for example) is not enough to guarantee transactional
semantics.

This specification does not attempt to counter all threats to a distributed system. F
example, it does not include facilities to counter breaches caused by analyzing th
traffic between machines.

More information about security threats and countermeasures is given in Appendix
“Guidelines for a Trustworthy System”.

1.1.4 Summary of Key Security Features

The security functionality defined by this specification comprises:

• Identification andauthentication of principals (human users and objects which
need to operate under their own rights) to verify they are who they claim to be.
Security Service V1.5 Introduction to Security May 2000 1-3



1

al
t
it.

is
ould

and

of

ed.

with
n

ave

stem

at
s.

re.
• Authorization andaccess control- deciding whether a principal can access an
object, normally using the identity and/or other privilege attributes of the princip
(such as role, groups, security clearance) and the control attributes of the targe
object (stating which principals, or principals with which attributes) can access

• Security auditing to make users accountable for their security related actions. It
normally the human user who should be accountable. Auditing mechanisms sh
be able to identify the user correctly, even after a chain of calls through many
objects.

• Security of communication between objects, which is often over insecure lower
layer communications. This requires trust to be established between the client
target, which may requireauthentication of clients to targetsandauthentication
of targets to clients. It also requiresintegrity protection and (optionally)
confidentiality protection of messages in transit between objects.

• Non-repudiation provides irrefutable evidence of actions such as proof of origin
data to the recipient, or proof of receipt of data to the sender to protect against
subsequent attempts to falsely deny the receiving or sending of the data.

• Administration of security information (for example, security policy) is also
needed.

This visible security functionality uses other security functionality such as
cryptography, which is used in support of many of the other functions but is not
visible outside the Security services. No direct use of cryptography by application
objects is proposed in this specification, nor are any cryptographic interfaces defin

1.1.5 Goals

The security architecture and facilities described in this document were designed
the following goals in mind. Not all implementations conforming to this specificatio
will meet all these goals.

1.1.5.1 Simplicity

The model should be simple to understand and administer. This means it should h
few concepts and few objects.

1.1.5.2 Consistency

It should be possible to provide consistent security across the distributed object sy
and associated legacy systems. This includes:

• Support of consistent policies for determining who should be able to access wh
sort of information within a security domain that includes heterogeneous system

• Fitting with existing permission mechanisms.

• Fitting with existing environments, for example, the ability to provide end-to-end
security even when using communication services, which are inherently insecu
1-4 Security Service V1.5 May 2000



1

ser

s

ils

nd

ingle
for

to
otect

urity

d be
• Fitting with existing logons (so extra logons are not needed) and with existing u
databases (to reduce the user administration burden).

1.1.5.3 Scalability

It should be possible to provide security for a range of systems from small, local
systems to large intra- and inter-enterprise ones. For larger systems, it should be
possible to:

• Base access controls on the privilege attributes of users such as roles or group
(rather than individual identities) to reduce administrative costs.

• Have a number of security domains, which enforce different security policy deta
but support interworking between them subject to policy. (This specification
includes architecture, but not interfaces for such interdomain working.)

• Manage the distribution of cryptographic keys across large networks securely a
without undue administrative overheads.

1.1.5.4 Usability for End Users

Security should be available as transparently as possible, based on sensible,
configurable defaults.

Users should need to log on to the distributed system only once to access object
systems and other IT services.

1.1.5.5 Usability for Administrators

The model should be simple to understand and administer and should provide a s
system image. It should not be necessary for an administrator to specify controls
individual objects or individual users of an object (except where security policy
demands this).

The system should provide good flexibility and fine granularity.

1.1.5.6 Usability for Implementors

Application developers must not need to be aware of security for their applications
be protected. However, a developer who understands security should be able to pr
application specific actions.

1.1.5.7 Flexibility of Security Policy

The security policy required varies from enterprise to enterprise, so choices of sec
features should be allowed. An enterprise should need to pay only for the level of
protection it requires, reducing the level (and therefore costs) for less sensitive
information or when the system is less vulnerable to threats. The enterprise shoul
Security Service V1.5 Introduction to Security May 2000 1-5



1

f
,
and

s

ome

For
s
that
ire

to

ould
tion
be

e

able to balance the costs of providing security, including the resources required to
implement, administer and run the system, against the perceived potential losses
incurred as the result of security breaches.

Particular types of flexibility required include:

• Choice of access control policy. The interfaces defined here allows for a choice o
mechanisms, ACLs using a range of privilege attributes such as identities, roles
groups, or labels. Details are hidden except from some administrative functions
security aware applications that want to choose their own mechanisms.

• Choice of audit policy. The event types which are to be audited is configurable.
This makes it possible to control the size of the audit trail, and therefore the
resources required to store and manage it.

• Support forsecurity functionality profiles as defined either in national or
international government criteria such as TCSEC (the US Trusted Computer
Evaluation Security Criteria) and ITSEC (the European Information Technology
Security Evaluation Criteria), or by more commercial groups such as X/Open, i
required.

1.1.5.8 Independence of Security Technology

The CORBA security model should be security technology neutral. For example,
interfaces specified for security of client-target object invocations should hide the
security mechanisms used from both the application objects and ORB (except for s
security administrative functions). It should be possible to use either symmetric or
asymmetric key technology.

It should be possible to implement CORBA security on a wide variety of existing
systems, reusing the security mechanisms and protocols native to those systems.
example, the system should not require introduction of new cryptosystems, acces
control repositories, or user registries. If the system is installed in an environment
also includes a procedural security regime, the composite system should not requ
dual administration of the user or authorization policy information.

1.1.5.9 Application Portability

An application object should not need to be aware of security, so it can be ported
environments that enforce different security policies and use different security
mechanisms. If an object enforces security itself, interfaces to Security services sh
hide the particular security mechanisms used (e.g., for authentication). The applica
security policy (for example, to control access to its own functions and state) should
consistent with the system security policy. For example, use should be made of th
same attributes for access control. Portability of applications enforcing their own
security depends on such attributes being available.

1.1.5.10 Interoperability

The security architecture should allow interoperability between objects including:
1-6 Security Service V1.5 May 2000



1

s
tes.

e,

s,
.

or
ay

e

into

n be
for

o

.

t
s

• Providing consistent security across a heterogeneous system where different
vendors may supply different ORBs.

• Interoperating between secure systems and those without security.

• Interoperating between domains of a distributed system where different domain
may support different security policies, for example, different access control attribu

• Interoperating across systems that support different security technology.

This specification includes an architecture that covers all of these, at least in outlin
but does not give specific interfaces and protocols for the last two. Interoperability
between domains is expected to have limited functionality in initial implementation
and interoperability between security mechanisms is not expected to be supported

1.1.5.11 Performance

Security should not impose an unacceptable performance overhead, particularly f
normal commercial levels of security, although a greater performance overhead m
occur as higher levels of security are implemented.

1.1.5.12 Object Orientation

The specification should be object-oriented:

• The security interfaces should be purely object-oriented.

• The model should use encapsulation to promote system integrity and to hide th
complexity of security mechanisms under simple interfaces.

• The model should allow polymorphic implementations of its objects based on
different underlying mechanisms.

1.1.5.13 Specific Security Goals

In addition to the security requirements listed above, there are more specific
requirements that need to be met in some systems, so the architecture must take
account:

• Regulatory requirements. The security model must conform to national
government regulations on the use of security mechanisms (cryptography, for
example). There are several types of controls, for example, controls on what ca
exported and controls on deployment and use such as limitations on encryption
confidentiality. Details vary from country to country; examples of requirements t
satisfy a number of these are:

• Allowing use of different cryptographic algorithms.

• Keeping the amount of information encrypted for confidentiality to a minimum

• Using identities for auditing which are anonymous, except to the auditor.

• Evaluation criteria for assurance. The security functionality and architecture mus
allow implementations to conform to standard security evaluation criteria such a
TCSEC, ITSEC, or Common Criteria (CC)1for security functionality and assurance
Security Service V1.5 Introduction to Security May 2000 1-7



1

s of

,

y.

sed,
ated
r

can

y).

as

e a
(which gives the required level of confidence in the correctness and effectivenes
the security functionality). It should allow assurance and security functionality
classes or profiles up to about the E3/B2 level. However, the specification also
allows systems with lower levels of security, where other requirements such as
performance are more important.

1.1.5.14 Security Architecture Goals

The security architecture should confine key security functionality to a trusted core
which enforces the essential part of the security policy such as:

• Ensuring that object invocations are protected as required by the security polic

• Requiring access control and auditing to be performed on object invocation.

• Preventing (groups of) application objects from interfering with each other or
gaining unauthorized access to each other’s state.

It must be possible to implement this trusted computing base so it cannot be bypas
and kept small to reduce the amount of code which needs to be trusted and evalu
in more secure systems. This trusted core is distributed, so it must be possible fo
different domains to have different levels of trust.

It should also be possible to construct systems where particular Security services
be replaced by ones using different security mechanisms, or supporting different
security policies without changing the application objects or ORB when using them
(unless these objects have chosen to do this in a mechanism or policy-specific wa

The security architecture should be compatible with standard distributed security
frameworks such as those of POSIX and X/Open.

1.2 Introduction to the Specification

1.2.1 Document Overview

This document specifies how to provide security in stand-alone and distributed
CORBA-compliant systems. Introducing Object Security services does not in itself
provide security in an object environment; security is pervasive, so introducing it h
implications on the Object Request Broker and on most Object services, Common
Facilities and object implementations.

This document defines the core security facilities and interfaces required to ensur
reasonable level of security of a CORBA-compliant system as a whole. The
specification includes:

1.Version 1 or 2.
1-8 Security Service V1.5 May 2000



1

ers

in

ect

,

ons

ces,
licy
as it

licy.

wo

and
of

her

nly

re
• A security model and architecture which describe the security concepts and
framework, the security objects needed to implement them, and how this count
security threats.

• The security facilities available to applications. This includes security provided
automatically by the system, protecting all applications, even those unaware of
security. The security facilities can also be used by security-aware applications
through OMG IDL interfaces defined in this specification.

• The security facilities and interfaces available for performing essential security
administration.

• The security facilities and interfaces available to ORB implementors, to be used
the production of secure ORBs.

• A description of how Security services affect the CORBA 2 ORB interoperability
protocols.

• A description of different levels of secure interoperability that are possible.

• A description of how these levels of interoperability can be provided using a sel
set of popular security mechanisms and protocols.

Items not included in this specification are:

• Support for interoperability between ORBs using different security mechanisms
though interoperability of different ORBs using the same security mechanism is
supported.

• Audit analysis tools, though an audit service that both the system and applicati
can use to record events is included.

• Management interfaces other than essential security policy management interfa
as management services are beyond the scope of this chapter. The security po
management interfaces were viewed as a necessary feature of this specification
is not possible to deploy a secure system without defining and managing its po

• Interfaces to allow applications to access cryptographic functions for use, for
example, in protecting their stored data. These interfaces are not provided for t
reasons: first, cryptography is generally a low-level primitive, used by Security
Service implementors but not needed by the majority of application developers;
second, providing a cryptographic interface would require addressing a variety
difficult regulatory and import/export issues.

• Specific security policy profiles.

The security model and architecture specified is extensible, to allow addition of furt
security facilities later.

1.2.1.1 Normative and Non-normative Material

This specification contains normative and non-normative (explanatory) material. O
sections Section 2.3, “Application Developer’s Interfaces,” on page 2-71 through
Section 3.8, “DCE-CIOP with Security,” on page 3-105 and Appendices B and D a
normative.
Security Service V1.5 Introduction to the Specification May 2000 1-9



1

ges
as to

re

ol

a

ain
the

so

ll
tor
to

not
y
e.

s

be
t one
the
1.2.2 CORBA Security and Secure Interoperability Feature Packages

CORBA security and Secure Interoperability is structured into several feature packa
which are enumerated below. These are used to structure the specification as well
specify the conformance requirements.

• Main Security Functionality Packages. There are two packages:

• Level 1: This provides a first level of security for applications which are unawa
of security and for those having limited requirements to enforce their own
security in terms of access controls and auditing.

• Level 2: This provides more security facilities, and allows applications to contr
the security provided at object invocation. It also includes administration of
security policy, allowing applications administering policy to be portable.

An ORB must provide at least one of these packages before it can claim to be
Secure ORB. For a definitive conformance requirement see Appendix C,
“Conformance Details.”

• Optional Security Functionality Packages. These provide functions that are
expected to be required in several ORBs, so are worth including in this
specification, but are not generally required enough to form part of one of the m
security functionality packages specified above. There is only one such option in
specification.

• Non-repudiation: This provides generation and checking of evidence so that
actions cannot be repudiated.

• Security Replaceability Packages. These packages specify if the ORB is
structured in a way that allows incorporation of different Security services, and if
how they can be incorporated. There are two possibilities:

1.ORB Services replaceability package: The ORB uses interceptor interfaces to ca
on object services, including security ones. It must use the specified intercep
interfaces and call the interceptors in the specified order. An ORB conforming
this does not include any significant security specific code, as that is in the
interceptors.

2.Security Service replaceability package: The ORB may or may not use
interceptors, but all calls on Security services are made via the replaceability
interfaces specified in Section 2.5, “Implementor’s Security Interfaces,” on
page 2-143. These interfaces are positioned so that the Security services do
need to understand how the ORB works (for example, how the required polic
objects are located), so they can be replaced independently of that knowledg

An ORB can provide Security by directly implementing the Security feature
package 1 or 2 into it without making use of any of the facilities provided by the
Replaceability feature packages. But in that case, the standard security policie
defined in this specification cannot be replaced by others, nor can the
implementation of the Security services be replaced. For example, it would not
possible to replace the standard access policy by a label-based policy if at leas
of the replaceability packages is not supported. Note that some replaceability of
1-10 Security Service V1.5 May 2000



1

h as

th a

ed
it.

e

s,

rity,

m
er
iate

roles

lly,
al
g

ges.
security mechanism used for security associations may still be provided if the
implementation uses some standard generic interface for Security services suc
GSS-API[11].

An ORB that supports one or both of these replaceability packages together wi
couple of basic ORB operations as discussed in Appendix D, “Conformance
Details” is said to beSecurity Ready2. Such an ORB does not in itself support any
security functionality but is ready to host security functionality that is implement
to use the facilities of the Security Replaceability package to hook Security into

• Common Secure Interoperability (CSI) Feature packages: These feature
packages each provide different levels of secure interoperability. There are thre
functionality levels for Common Secure Interoperability (CSI). All levels can be
used in distributed secure CORBA compliant object systems where clients and
objects may run on different ORBs and different operating systems. At all level
security functionality supported during an object request includes (mutual)
authentication between client and target and protection of messages - for integ
and when using an appropriate cryptographic profile, also for confidentiality.

An ORB conforming to CSI level 2 can support all the security functionality
described in the CORBA Security specification. Facilities are more restricted at
levels 0 and 1. The three levels are:

1.Identity based policies without delegation (CSI level 0): At this level, only the
identity (no other attributes) of the initiating principal is transmitted from the
client to the target, and this cannot be delegated to further objects. If further
objects are called, the identity will be that of the intermediate object, not the
initiator of the chain of object calls.

2.Identity based policies with unrestricted delegation (CSI level 1): At this level,
only the identity (no other attributes) of the initiating principal is transmitted fro
the client to the target. The identity can be delegated to other objects on furth
object invocations, and there are no restrictions on its delegation, so intermed
objects can impersonate the user. (This is the impersonation form of simple
delegation defined in Section 2.1.6, “Delegation,” on page 2-13.)

3.Identity & privilege based policies with controlled delegation (CSI level 2): At
this level, attributes of initiating principals passed from client to target can
include separate access and audit identities and a range of privileges such as
and groups. Delegation of these attributes to other objects is possible, but is
subject to restrictions, so the initiating principal can control their use. Optiona
composite delegation is supported, so the attributes of more than one princip
can be transmitted. Therefore, it provides interoperability for ORBs conformin
to all CORBA Security functionality.

An ORB that interoperates securely must provide at least one of the CSI packa
For the definitive statement on conformance requirements see Appendix D.

2.While this may sound strange, it is still true that a Secure ORB need not be a Security Ready
ORB.
Security Service V1.5 Introduction to the Specification May 2000 1-11



1

nd
the

e of
r

n
nd
se
P.

out
2]
s

s
er

ned

e
ns
SI-

SL
P.

y
ility

ndix
• SECIOP Interoperability package. An ORB with the SECIOP Interoperability
package can generate and use security information in the IOR and can send a
receive secure requests to/from other ORBs using the GIOP/IIOP protocol with
security (SECIOP) enhancements defined in Section 3.2, “Secure Inter-ORB
Protocol (SECIOP),” on page 3-34 (if necessary), if they both use the same
underlying security technology.

• Security Mechanism packages: The choice of mechanisms and protocol to use
depends on the mechanism type required and the facilities required by the rang
applications expected to use it. This specification defines how the following fou
security protocols can be used as the medium for secure interoperability under
CORBA:

1.SPKM Protocol: This protocol supports identity based policies without delegatio
(CSI level 0) using public key technology for keys assigned to both principals a
trusted authorities. The SPKM protocol is based on the definition in [20]. The u
of SPKM in CORBA interoperability is based on the SECIOP extensions to IIO

2.GSS Kerberos Protocol: This protocol supports identity based policies with
unrestricted delegation (CSI level 1) using secret key technology for keys
assigned to both principals and trusted authorities. It is possible to use it with
delegation (providing CSI level 0). The GSS Kerberos protocol is based on [1
which itself is a profile of [13]. The use of Kerberos in CORBA interoperability i
based on the SECIOP extensions to IIOP.

3.CSI-ECMA Protocol: This protocol supports identity and privilege based policie
with controlled delegation (CSI level 2). It can be used with identity, but no oth
privileges and without delegation restrictions if the administrator permits this
(CSI level 1) and can be used without delegation (CSI level 0). For keys assig
to principals, it has two options:

• It can use either secret or public key technology.

• It uses public key technology for keys assigned to trusted authorities.

The CSI-ECMA protocol is based on the ECMA GSS-API Mechanism as
defined in ECMA 235, but is a significant subset of this - the SESAME profil
as defined in [16]. It is designed to allow the addition of new mechanism optio
in the future; some of these are already defined in ECMA 235. The use of C
ECMA in CORBA interoperability requires the SECIOP extensions to IIOP.

4.SSL protocol: This protocol supports identity based policies without delegation
(CSI level 0). The SSL protocol is based on the definition in [21]. The use of S
in CORBA interoperability does not depend on the SECIOP extensions to IIO

• SECIOP Plus DCE-CIOP Interoperability : An ORB with the Standard plus
DCE-CIOP secure interoperability package supports all functionality required b
standard secure interoperability package, and also provides secure interoperab
(using the DCE Security services) using the DCE-CIOP protocol.

An ORB that interoperates securely must do so using one of these protocol
packages. For the definitive statement on conformance requirements see Appe
D.
1-12 Security Service V1.5 May 2000



1

ity

s of

-1 on
ure.
The requirements that must be satisfied by a conformant ORB are enumerated in
Appendix D. The conformance statement required for a CORBA conformant secur
implementation is defined in Appendix D. This includes a table that can be filled to
show what the ORB conforms to.

1.2.3 Feature Packages and Modules

The IDL specified in this chapter is partitioned into modules that closely reflect the
feature packaging scheme described above. The Security module holds definition
common data structures and constants that most other modules depend on. The
relationship is as shown in Table 1-1.

The specification is based on a general three layer architecture as shown in Figure 1
page 1-14, with the interfaces defined in each module positioned as shown in the fig

Table 1-1 Feature Packages and Modules

Feature Package Primary Module Also Depends on

Security Functionality Level 1 SecurityLevel1 Security
CORBA, TimeBase

Security Functionality Level 2 SecurityLevel2 Security, CORBA, TimeBase
SecurityLevel1
SecurityAdmin

Non Repudiation NRservice Security,
SecurityLevel2
CORBA, TimeBase

Security Service
Replaceability

SecurityReplaceable Security, CORBA, TimeBase
SecurityLevel2

ORB Service Replaceability Interceptor CORBA

CSI Level 0, 1 and 2 SECIOP CORBA

SECIOP SECIOP Security, CORBA, TimeBase, IOP

SPKM, Kerberos,
CSI-ECMA

SECIOP Security, CORBA, TimeBase, IOP

SSL SSL Security, CORBA, TimeBase, IOP

DCE-CIOP DCE_CIOPSecurity Security, CORBA, TimeBase, IOP
Security Service V1.5 Introduction to the Specification May 2000 1-13



1

Figure 1-1 Modules and Their Relation to Layers of the Architecture

The SecurityReplaceability module defines the interfaces that must be used,
together with certain interfaces defined in theSecurityLevel2 module, to encapsulate
the underlying security infrastructure so as to enable components of the Security
Service to use them interchangeably.

Applications (clients of CORBA Security Service)

CORBA Security Services

Security Infrastructure ORB Infrastructure

CORBASecurityReplaceability

SecurityLevel1, SecurityLevel2, SecurityAdmin, NRservice

Interfaces provided by
the Security Service
and used by Application
Programmers

Interfaces provided by
the Infrastructure
and used by Security
Service Implementors
1-14 Security Service V1.5 May 2000



Interfaces 2
ork
or
te
s as

licies.

may
Contents

This chapter contains the following topics.

2.1 Security Reference Model

This section describes a security reference model that provides the overall framew
for CORBA security. The purpose of the reference model is to show the flexibility f
defining many different security policies that can be used to achieve the appropria
level of functionality and assurance. As such, the security reference model function
a guide to the security architecture.

2.1.1 Definition of a Security Reference Model

A reference model describes how and where a secure system enforces security po
Security policies define:

• Under what conditions active entities (such as clients acting on behalf of users)
access objects.

Topic Page

“Security Reference Model” 2-1

“Security Architecture” 2-28

“Application Developer’s Interfaces” 2-71

“Administrator’s Interfaces” 2-116

“Implementor’s Security Interfaces” 2-143
Security Service V1.5 May 2000 2-1



2

are,

.)

ons

d by

.
ty is
will
but
eir

re
ing

of a
l is
he

s
cy
• What authentication of users and other principals is required to prove who they
what they can do, and whether they can delegate their rights. (A principal is a
human user or system entity that is registered in and is authentic to the system

• The security of communications between objects, including the trust required
between them and the quality of protection of the data in transit between them.

• What accountability of which security-relevant activities is needed.

Figure 2-1 depicts the model for CORBA secure object systems. All object invocati
are mediated by appropriate security functions to enforce policies such as access
controls. These functions should be tamper-proof, always be invoked when require
security policy, and function correctly.

Figure 2-1 A Security Model for Object Systems

Many application objects are unaware of the security policy and how it is enforced
The user can be authenticated prior to calling the application client and then securi
subsequently enforced automatically during object invocations. Some applications
need to control or influence what policy is enforced by the system on their behalf,
will not do the enforcement themselves. Some applications will need to enforce th
own security, for example, to control access to their own data or audit their own
security-relevant activities.

The ORB cannot be completely unaware of security as this would result in insecu
systems. The ORB is assumed to at least handle requests correctly without violat
security policy, and to call Security Services as required by security policy.

A security model normally defines aspecificset of security policies. Because the OMG
Object Management Architecture (OMA) must support a wide variety of different
security policies to meet the needs of many commercial markets, a single instance
security model is not appropriate for the OMA. Instead, a security reference mode
defined that provides a framework for supporting many different kinds of policies. T
security reference model is ameta-policybecause it is intended to encompass all
possible security policies supported by the OMA.

The meta-policy defines the abstract interfaces that are provided by the security
architecture defined in this document. The model enumerates the security function
that are defined as well as the information available. In this manner, the meta-poli

Client
Target
Object

request request

ORB

Security Implementation
enforcing security policy

user

..
2-2 Security Service V1.5 May 2000



2

g
ately

ither

the
l

its

the

an
bove.

s
tes,
the
y the
d

lege
provides guidance on the permitted flexibility of the policy definition. The remainin
sections describe the elements of the meta-model. The description is kept deliber
general at this point.

2.1.2 Principals and Their Security Attributes

An active entity must establish its rights to access objects in the system. It must e
be a principal, or a client acting on behalf of a principal.

A principal is a human user or system entity that is registered in and authentic to
system.Initiating principals are the ones that initiate activities. An initiating principa
may beauthenticated in a number of ways, the most common of which for human
users is a password. For systems entities, the authentication information such as
long-term key, needs to be associated with the object.

An initiating principal has at least one, and possibly severalidentities (represented in
the system by attributes) which may be used as a means of:

• Making the principal accountable for its actions.

• Obtaining access to protected objects (though other privilege attributes of a
principal may also be required for access control).

• Identifying the originator of a message.

• Identifying who to charge for use of the system.

There may be several forms of identity used for different purposes. For example,
audit identity may need to be anonymous to all but the audit administrator, but the
access identitymay need to be understood so that it can be specified as an entry in
access control list. The same value of the identity can be used for several of the a

The principal may also haveprivilege attributes which can be used to decide what it
can access. A variety of privilege attributes may be available depending on acces
policies (see Section 2.1.4.3, “Access Policies,” on page 2-9). The privilege attribu
which a principal is permitted to take, are known by the system. At any one time,
principal may be using only a subset of these permitted attributes, either chosen b
principal (or an application running on its behalf), or by using a default set specifie
for the principal. There may be limits on the duration for which these privilege
attributes are valid and may be controls on where and when they can be used.

Security attributes may be acquired in three ways:

1. Some attributes may be available, without authentication, to any principal. This
specification defines one such attribute, calledPublic.

2. Some attributes are acquired through authentication; identity attributes and privi
attributes are in this category.

3. Some attributes are acquired through delegation from other principals.

When a user or other principal is authenticated, it normally supplies:

• Its security name.
Security Service V1.5 Security Reference Model May 2000 2-3



2

heir
et

icy.

h
ns,

on.
use
• The authentication information needed by the particular authentication method
used.

• Requestedprivilege attributes (though the principal may change these later).

A principal’s security attributes are maintained in secure CORBA systems in a
credential as shown in Figure 2-2.

Figure 2-2 Credential Containing Security Attributes

2.1.3 Secure Object Invocations

Most actions in the system are initiated by principals (or system entities acting on t
behalf). For example, after the user logs onto the system, the client invokes a targ
object via an ORB as shown in Figure 2-3.

Figure 2-3 Invocation of Target Object via ORB

What security functionality is needed on object invocation depends on security pol
It may include:

• Establishing asecurity associationbetween the client and target object so that eac
has the required trust that the other is who it claims to be. In many implementatio
associations will normally persist for many interactions, not just a single invocati
(Within some environments, the trust may be achieved by local means, without
of authentication and cryptography.)

Credentials - containing security attributes

unauthenticated
attributes
- Public

authenticated attributes

identity
attributes

privilege
attributes

Client

request request

ORB

Target
Object

client-side security on invocation
security association, access control

message protection, audit

target-side security on invocation
security association, access control

message protection, audit
2-4 Security Service V1.5 May 2000



2

on
,

sit,

ject
ling

t, a
tion
sees

l not
trict

e

nd

on
the

ther
ality

l

ible
• Deciding whether this client (acting for this principal) can perform this operation
this object according to the access control policy, as described in Section 2.1.4
“Access Control Model,” on page 2-7.

• Auditing this invocation if required, as described in Section 2.1.5, “Auditing,” on
page 2-11.

• Protecting the request and response from modification or eavesdropping in tran
according to the specified quality of protection.

For all these actions, security functions may be needed at the client and target ob
sides of the invocation. For example, protecting a request may require integrity sea
of the message before sending it, and checking the seal at the target.

The association is asymmetric. If the target object invokes operations on the clien
new association is formed. It is possible for a client to have more than one associa
with the same target object. The application is unaware of security associations; it
only requests and responses.

A secure system can also invoke objects in an insecure system. In this case, it wil
be possible to establish trust between the systems, and the client system may res
the requests passed to the target.

2.1.3.1 Establishing Security Associations

The client and target object establish a secure association by:

• Establishing trust in one another’s identities, which may involve the target
authenticating the client’s security attributes and/or the client’s authenticating th
target’s security name.

• Making the client’s credentials (including its security attributes) available to the
target object.

• Establishing the security context which will be used when protecting requests a
responses in transit between client and target object.

The way of establishing a security association between client and object depends
the security policies governing both the client and target object, whether they are in
same domain, and the underlying security mechanism. For example, the type of
authentication and key distribution used.

The security policies define the choice of security association options such as whe
one-way or mutual authentication is wanted between client and target, and the qu
of protection of data in transit between them.

The security policy is enforced using underlying security mechanisms. This mode
allows a range of such mechanisms for security associations. For example, the
mechanism may use symmetric (secret) key technology, asymmetric (public) key
technology, or a combination of these. The Key Distribution services, Certification
Authorities and other underlying Security services, which may be used, are not vis
in the model.
Security Service V1.5 Security Reference Model May 2000 2-5



2

may
have

ch as
igure

rned

.

2.1.3.2 Message Protection

Requests and responses can be protected for:

• Integrity. This prevents undetected, unauthorized modification of messages and
detect whether messages are received in the correct order and if any messages
been added or removed.

• Confidentiality. This ensures that the messages have not been read in transit.

A security association may in some environments be able to provide integrity and
confidentiality protection through mechanisms inherent in the environment, and so
avoid having to use encryption.

The security policy specifies the strength of integrity and confidentiality protection
needed. Achieving this integrity protection may require sealing the message and
including sequence numbers. Confidentiality protection may require encrypting it.

This security reference model allows a choice of cryptographic algorithms for
providing this protection.

Performing a request on a remote object using an ORB and associated services, su
TP, might cause a message to be constructed to send to the target as shown in F
2-4. At the target, this process is reversed, and results in the ORB invoking the
operation on the target passing it the parameters sent by the client. The reply retu
follows a similar path.

Message protection could be provided at different points in the message handling
functionality of an ORB, which would affect how much of the message is protected

Figure 2-4 Message Protection

Client Target
Object

operation

parameters

operation(parameters)
on target object reference

parameters

parametersoperation

parametersoperationtarget id

parametersoperationtarget idservice
info

parametersoperationtarget idservice
info

host
address

always protected
if any message protection is done

always protected, so parameters can
be used only in specified operations

protected, so operation is on the right
object (implies message must be back in
clear before routing to target object)
service info like GIOP service context
added by services such as TP.
service info should be protected
the host address cannot be encrypted
as this would prevent correct routing

ORB/OA

message header and protected message
2-6 Security Service V1.5 May 2000



2

be

e may

n the
BA
tion

e, an
e

f
rt of

-

ny
n
on,

the
licy
ther

l

RB
ation
te
Messages are protected according to the quality of protection required which may
for integrity, but may also be for confidentiality. Both integrity and confidentiality
protection are applied to the same part of the message. The request and respons
be protected differently.

The CORBA security model can protect messages even when there is no security i
underlying communications software. In this case, the message protected by COR
security includes the target id, operation and parameters, and any service informa
included in the message.

In some systems, protection may be provided below the ORB message layer (for
example, using the secure sockets layer or even more physical means). In this cas
ORB that knows such security is available will not need to provide its own messag
protection.

Note that as messages will normally be integrity protected, this will limit the type o
interoperability bridge that can be used. Any bridge that changes the protected pa
the message after it has been integrity (or confidentiality) protected will cause the
security check at the target to fail unless a suitable security gateway is used to re
protect the message.

2.1.4 Access Control Model

The model depicted in Figure 2-5 on page 2-8 provides a simple framework for ma
different access control security policies. This framework consists of two layers: a
object invocation access policy, which is enforced automatically on object invocati
and an application access policy, which the application itself enforces.

The object invocation access policy governs whether this client, acting on behalf of
current principal, can invoke the requested operation on this target object. This po
is enforced by the ORB and the Security services it uses, for all applications, whe
they are aware of security or not.

The application object access policy is enforced within the client and/or the object
implementation. The policy can be concerned with controlling access to its interna
functions and data, or applying further controls on object invocation.

All instantiations of the security reference model place at least some trust in the O
to enforce the access policy. Even in architectures where the access control medi
occurs solely within the client and target objects, the ORB is still required to valida
the request parameters and ensure message delivery as described above.
Security Service V1.5 Security Reference Model May 2000 2-7



2

e
of this.

ly if

or
and

s,
nge

rol,”

is

nd
.

Figure 2-5 Access Control Model

The access control model shows the client invoking an operation as specified in th
request, and also shows application access decisions, which can be independent

2.1.4.1 Object Invocation Access Policy

A client may invoke an operation on the target object as specified in the request on
this is allowed by the object invocation access policy. This is enforced byAccess
Decision Functions.

Client side access decision functions define the conditions that allow the client to
invoke the specified operation on the target object. Target side access decision
functions define the conditions that allow the object to accept the invocation. One
both of these may not exist. Some systems may support target side controls only,
even then, only use them for some of the objects.

The access policy for object invocation is built into these access decision function
which just provide a yes/no answer when asked to check if access is allowed. A ra
of access policies can be supported as described in Section 2.3.10, “Access Cont
on page 2-103.

The access decision function used on object invocation to decide whether access
allowed bases its decision on:

• The current privilege attributes of the principal (see Section 2.1.2, “Principals a
Their Security Attributes,” on page 2-3). Note that these can include capabilities

• Any controls on these attributes, for example, the time for which they are valid.

• The operation to be performed.

• The control attributes of the target object (see Section 2.1.4, “Access Control
Model,” on page 2-7).

Client

request request

ORB

Target
Object

client-side invocation access decision target-side invocation access decision

client application
access decision

target application
access decision
2-8 Security Service V1.5 May 2000



2

ject

licy

the

range

r all

cide
es

d

The first three of these functions are available as part of the environment of the ob
invocation.

The control attributes for the target object are associated with the object when it is
created (though may be changed later, if security policy permits).

2.1.4.2 Application Access Policy

Applications may also enforce access policies. An application access policy may
control who can invoke the application, extending the object invocation access po
enforced by the ORB, and taking into account other items such as the value of the
parameters, or the data being accessed. As for standard object invocation access
controls, there may be client and target object access decision functions.

An application object may also control access to finer-grained functions and data
encapsulated within it, which are not separate objects.

In either case, the application will need its own access decision function to enforce
required access control rules.

2.1.4.3 Access Policies

The general access control model described here can be used to support a wide
of access policies includingAccess Control List schemes,label-basedschemes, and
capability schemes. This section describes the overall authorization model used fo
types of access control.

The authorization model is based on the use of access decision functions, which de
whether an operation or function can be performed by applying access control rul
using:

• Privilege attributes of the initiator (called initiator Access Control Information or
ACI in ISO/IEC 10181-3).

• Control attributes of the target (sometimes known as the target ACI).

• Other relevant information about the action such as the operation and data, an
about the context, such as the time.

Figure 2-6 Authorization Model

The privilege and control attributes are the main variables used to control access;
therefore, the following sections focus on these.

Access Decision Function
enforcing

access control rules

Action and
context info

Initiator
privilege attributes

access allowed?

yes/no

Target
control attributes
Security Service V1.5 Security Reference Model May 2000 2-9



2

s:

e
, or

s.

trol
oins
ased
.

at
e a

t,
to

ns,
ch
em,

,

2.1.4.4 Privilege Attributes

A principal can have a variety of privilege attributes used for access control such a

• The principal’s access identity.

• Roles, which are often related to the user’s job functions.

• Groups, which normally reflect organizational affiliations. A group could reflect th
organizational hierarchy, for example, the department to which the user belongs
a cross-organizational group, which has a common interest.

• Security clearance.

• Capabilities, which identify the target objects (or groups of objects), and their
operations on which the principal is allowed.

• Other privileges that an enterprise defines as being useful for controlling acces

In an object system, which may be large, using individual identities for access con
may be difficult if many sets of control attributes need to be changed when a user j
or leaves the organization or changes his job. Where possible, controls should be b
on some grouping construct (such as a role or organizational group) for scalability

The security reference model does not dictate the particular privilege attributes, th
any compliant secure system must support; however, this specification does defin
standard, extensible set of privilege attribute types.

Note – In this specification,privilege is often used as shorthand forprivilege attribute.

2.1.4.5 Control Attributes

Control attributes are associated with the target. Examples are:

• Access control lists, which identify permitted users by name or other privilege
attributes, or

• Information used in label-based schemes, such as the classification of an objec
which identifies (according to rules) the security clearance of principals allowed
perform particular operations on it.

An object system may have many objects, each of which may have many operatio
so it may not be practical to associate control attributes with each operation on ea
object. This would impose too large an overhead on the administration of the syst
and the amount of storage needed to hold the information.

Control attributes are therefore expected to be shared by categories of objects,
particularly objects of the same type in the same security policy domain. However
they could be associated with an individual object.
2-10 Security Service V1.5 May 2000



2

than

oup

ent

19

ss of
ed

via a
ither

d

.

t
ies

of

in
rds.

sfers
Rights

Control attributes may be associated with a set of operations on an object, rather
each individual operation. Therefore, a user with specified privileges may haverights
to invoke a specific set of operations.

It is possible to define what rights give access to what operations.

2.1.4.6 Access Policies Supported by This Specification

The model allows a range of access policies using control attributes, which can gr
subjects (using privileges), objects (using domains), and operations (using rights).

This specification defines a particular access policy type and associated managem
interface as part of security functionality Level 2. This is defined in
DomainAccessPolicy Interface under Section 2.4.4, “Access Policies,” on page 2-1.

Regardless of the access control policy management interface used (i.e., regardle
whether the particular Level 2 access policy interfaces or other interfaces not defin
in this specification are used), all access decisions on object invocation are made
standard access decision interface, so the access control policy can be changed e
by administrative action on, or substitution of, the objects that define the policy an
implement the access decision. However, different management interfaces will
ordinarily be required for management of different types of control attributes.

2.1.5 Auditing

Security auditing assists in the detection of actual or attempted security violations
This is achieved by recording details ofsecurity relevant eventsin the system.
(Depending on implementation, recording an audit event may involve writing even
information to a log, generating an alert or alarm, or some other action.) Audit polic
specify which events should be audited under what circumstances.

There are two categories of audit policies:system audit policies,which control what
events are recorded as the result of relevant system activities, andapplication audit
policies,which control which events are audited by applications.

System events, which should be auditable, include events such as authentication
principals, changing privileges, success or failure of object invocation, and the
administration of security policies. These system events may occur in the ORB or
security or other services, and these components generate the required audit reco

Application events may be security relevant, and therefore may need auditing
depending on the application. For example, an application that handles money tran
might audit who transferred how much money to whom.
Security Service V1.5 Security Reference Model May 2000 2-11



2

ice),

d to
icies

ct
l

ed on

be
ose

ons
ype,

,
and

d to

rated
Events can be categorized by event family (e.g., system, financial application serv
and event type within that family. For example, there are defined event types for
system events.

Figure 2-7 Auditing Model

Potentially a very large number of events could be recorded; audit policies are use
restrict what types of events to audit under which circumstances. System audit pol
are enforced automatically for all applications, even security unaware ones.

The invocation audit policy is enforced at a point in the ORB where the target obje
and operation for the request are known, and the reply status is known. The mode
supports audit policies where the decision on whether to audit an event can be bas
the event type (such as method invocation complete, access control check done,
security association made), the success or failure of this event (only failures may
audited), the object and the operation being invoked, the audit id of principal on wh
behalf the invocation is being done, and even the time of day.

This specification defines a particular invocation audit policy type and associated
management interfaces as part of security functionality Level 2. This allows decisi
on whether to audit an invocation to depend on the object type, operation, event t
and success or failure of this.

The specification also defines a particular audit policy type for application auditing
which allows decisions on whether to audit the event to be based on the event type
its success or failure.

Events can either be recorded on audit trails for later analysis or, if they are deeme
be serious, alarms can be sent to an administrator. Application audit trails may be
separate from system ones. This specification includes how audit records are gene

Client

request request

ORB

Target
Object

security association

client application
audit

target application
audit

invocation access control etc.
security association

invocation access control etc.

Audit Audit
2-12 Security Service V1.5 May 2000



2

w
nd

ject
is

del,”
.

ions

ient

the
ed
and then written to audit channels, but not how these records are filtered later, ho
audit trails and channels are kept secure, and how the records can be collected a
analyzed.

2.1.6 Delegation

In an object system, a client calls on an object to perform an operation, but this ob
will often not complete the operation itself, so will call on other objects to do so. Th
will usually result in a chain of calls on other objects as shown in Figure 2-8.

Figure 2-8 Delegation Model

This complicates the access model described in Section 2.1.4, “Access Control Mo
on page 2-7, as access decisions may need to be made at each point in the chain
Different authorization schemes require different access control information to be
made available to check which objects in the chain can invoke which further operat
on other objects.

In privilege delegation, the initiating principal’s access control information (i.e., its
security attributes) may be delegated to further objects in the chain to give the recip
the rights to act on its behalf under specified circumstances.

Another authorization scheme isreference restriction where the rights to use an
object under specified circumstances are passed as part of the object reference to
recipient. Reference restriction is not included in this specification, though describ
as a potential future security facility in Appendix F, “Facilities Not in This
Specification”.

The following terms are used in describing delegation options:

• Initiator : the first client in a call chain.

• Final target: the final recipient in a call chain.

Client

Client

Target

Target
Object

Client

Target

Client

Target

Target
Object

Target
Object

..
Security Service V1.5 Security Reference Model May 2000 2-13



2

ject
ge

ived

btain

gated

he
iate
le to

ts

this

rify
the

their

ed
• Intermediate: an object in a call chain that is neither the initiator nor the final
target.

• Immediate invoker: an object or client from which an object receives a call.

2.1.6.1 Privilege Delegation

In many cases, objects perform operations on behalf of the initiator of a chain of ob
invocations. In such cases, the initiator needs to delegate some or all of its privile
attributes to the intermediate objects which will act on its behalf.

Some intermediates in a chain may act on their own behalf (even if they have rece
delegated credentials) and perform operations on other objects using their own
privileges. Such intermediates must be (or represent) principals so that they can o
their own privileges to be transmitted to objects they invoke.

Some intermediates may need to use their own privileges at some times, and dele
privileges at other times.

A target may wish to restrict which of its operations an invoker can perform. This
restriction may be based on the identity or other privilege attributes of the initiator. T
target may also want to verify that the request comes from an authorized intermed
(or even check the whole chain of intermediates). In these cases, it must be possib
distinguish the privileges of the initiator and those of each intermediate.

Some restrictions may or may not be placed by the initiator about the set of objec
which may be involved in a delegation chain.

When no restrictions are placed and only the initiator's privileges are being used,
case is called impersonation.

When restrictions are placed, additional information is used so that objects can ve
whether or not their characteristics (e.g., their name or a part of their name) satisfy
restrictions. In order to allow clients or initiating objects to specify this additional
information, objects can be (securely) associated with these characteristics (e.g.,
name).

2.1.6.2 Overview of Delegation Schemes

There are potentially a large number of delegation models. They can all be captur
using the following sentence.

An intermediate invoking a target object may perform:

1. one method on one object

2. several methods on one object

3. any method on: a. one object
b. some object(s)
c. any object

(target restrictions)
(no target restrictions)
2-14 Security Service V1.5 May 2000



2

ich

ol

ne

llow

, or
e
em.

r
r
et
rget
ress
When delegating privileges through a chain of objects, the caller does not know wh
objects will be used in completing the request, and therefore cannot easily restrict
privileges to particular methods on objects. It generally relies on the target’s contr
attributes to do this.

A privilege delegation scheme may provide any of the other controls, though no o
scheme is likely to provide all of them.

2.1.6.3 Facilities Potentially Available

Different facilities are available to intermediates (or clients) before initiating object
invocations and to intermediate or target objects accepting an invocation.

Controls Used Before Initiating Object Invocations

A client or intermediate can specify restrictions on the use of the access control
information provided to another intermediate or to a target object. Interfaces may a
support of the following facilities.

• Control of privileges delegated. An initiator (or an intermediate) can restrict which
of its own privileges are delegated.

• Control of target restrictions . An initiator (or an intermediate) can restrict where
individual privileges can be used. This restriction may apply to particular objects
some grouping of objects. It may restrict the target objects, which may use som
privileges for access control, and the intermediates, which can also delegate th

Control of privileges used. As previously described, there are several options fo
deciding which privileges an intermediate object may use when invoking anothe
object. Note that delegated privileges are not actually delegated to a single targ
object; they are available to any object running under the same identity as the ta
object in the target object’s address space (since any objects in the target’s add
space may retrieve the inbound Credentials and any object sharing the target’s
identity may successfully become the caller’s delegate).

The specified interfaces allow the following.

using
(no privileges
(a subset of the initiator’s privileges
(both the initiator’s and its own
privileges
(received privileges and its own
privileges

(simple delegation)
(composite delegation)
(combined or traced delegation,
depending on whether privileges
are combined or concatenated)

during some validity period (part of time constraints)

for a specified number of invocations (part of time constraints)
Security Service V1.5 Security Reference Model May 2000 2-15



2

ons,
e

for
eives

em.
the

ate
• No delegation

The client permits the intermediate to use its privileges for access control decisi
but does not permit them to be delegated, so the intermediate object cannot us
these privileges when invoking the next object in the chain.

Figure 2-9 No Delegation

• Simple delegation

The client permits the intermediate to assume its privileges, both using them
access control decisions and delegating them to others. The target object rec
only the client's privileges, and does not know who the intermediate is (when
used without target restrictions, this is known as impersonation).

Figure 2-10 Simple Delegation

• Composite delegation

The client permits the intermediate object to use its credentials and delegate th
Both the client privileges and the immediate invoker’s privileges are passed to
target, so that both the client privileges and the privileges from the immediate
source of the invocation can be individually checked.

Figure 2-11 Composite Delegation

• Combined privileges delegation

The client permits the intermediate object to use its privileges. The intermedi

Client Intermediate
Object

Target
Object

client credentials intermediate
credentials

Client Intermediate
Object

Target
Object

client credentials client credentials

Client Intermediate
Object

Target
Object

client credentials
client and

intermediate

credentials
2-16 Security Service V1.5 May 2000



2

rom

em.
are

in.

it
rget
hey

f
e

nly
re

tes
and
converts these privileges into credentials and combines them with its own
credentials. In that case, the target cannot distinguish which privileges come f
which principal.

Figure 2-12 Combined Privileges Delegation

• Traced delegation

The client permits the intermediate object to use its privileges and delegate th
However, at each intermediate object in the chain, the intermediate's privileges
added to privileges propagated to provide a trace of the delegates in the cha

Figure 2-13 Traced Delegation

A client application may not see the difference between the last three options,
may just see them all as some form of “composite” delegation. However, the ta
object can obtain the credentials of intermediates and the initiator separately if t
have been transmitted separately.

• Control of time restrictions . Time periods can be applied to restrict the duration o
the delegation. In some implementations, the number of invocations may also b
controllable.

Facilities Used on Accepting Object Invocations

An intermediate or a target object should be able to:

• Extract received privileges and use them in local access control decisions.
Often only the privileges of the initiator are relevant. When this is not the case, o
the privileges of the immediate invoker may be relevant. In some cases, both a
relevant. Finally, the most complex authorization scheme may require the full
tracing of the initiator and all the intermediates involved in a call chain.
In addition, some targets may need to obtain the miscellaneous security attribu
(such as audit identity, charging identity) and the associated target restrictions
time constraints.

• Extract credentials (when permitted) for use when making the next call as a
delegate.

Client Intermediate
Object

Target
Object

client credentials

client and
intermediate’s

privileges

in a single
credential

Client Target
Object

intermediate
objects

client credentials chain of

credentials
Security Service V1.5 Security Reference Model May 2000 2-17



2

or
rmit
tor's
tion
e

it

ne

e of

ied,

d

is
in

vent

ns
• Build (when permitted) new credentials from the received access control
information with changed (normally reduced) privileges and/or different target
restrictions or time constraints.

2.1.6.4 Specifying Delegation Options

The administrator may specify which delegation option should be used by default
when an object acts as an intermediate. For example, he may specify whether a
particular intermediate object normally delegates the initiating principal's privileges
uses its own, or both if needed. Also, the access policy used at the target could pe
or deny access based on more than one of the privileges it received (e.g., the initia
and the intermediate's). This allows many applications to be unaware of the delega
options in use, as many of the controls for delegation are done automatically by th
ORB when the intermediate invokes the next object in the chain.

However, a security-aware intermediate object may itself specify what delegation
wants. For example, it may choose to use the original principal's privileges when
invoking some objects and its own when invoking others.

2.1.6.5 Technology Support for Delegation Options

Different security technologies support different delegation models. Currently, no o
security technology supports all the options described above.

In Security Functionality Level 1, all delegation is done automatically in the ORB
according to delegation policy, so the objects in the chain cannot change the mod
delegation used, or restrict privileges passed and where or when they are used.

Of the options on which credentials are passed, onlyno delegationand impersonation
(simple delegation without any target restrictions)needto be supported.

In Security Functionality Level 2, applications may use any of the interfaces specif
but may get aCORBA::NO_IMPLEMENT exception returned. Note that these
interfaces do not allow the application to set controls such as target restrictions.
Appendix F, “Facilities Not in This Specification” includes potential future advance
delegation facilities, which include such controls.

2.1.7 Non-repudiation

Non-repudiation services provide facilities to make users and other principals
accountable for their actions. Irrefutable evidence about a claimed event or action
generated and can be checked to provide proof of the action. It can also be stored
order to resolve later disputes about the occurrence or the nonoccurrence of the e
or action.

The non-repudiation services specified here are under the control of the applicatio
rather than used automatically on object invocation, so are only available to
applications aware of this service.
2-18 Security Service V1.5 May 2000



2

may
r and
ple,
ate

cs of
d are
d of

took

here

es
nce

be
made

ived
by
n

of
Depending on the non-repudiation policy in effect, one or more pieces of evidence
be required to prove that some kind of event or action has taken place. The numbe
the characteristics of each depends upon that non-repudiation policy. As an exam
evidence containing a timestamp from a trusted authority may be required to valid
evidence.

There are many types of non-repudiation evidence, depending on the characteristi
the event or action. In order to distinguish between them, the types are defined an
part of the evidence. Conceptually, evidence may thus be seen as being compose
the following components:

• non-repudiation policy (or policies) applicable to the evidence

• type of action or event

• parameters related to the type of action or event

A date and time are also part of the evidence. This shows when an action or event
place and allows recovery from some situations such as the compromise of a key.

The evidence includes some proof of the origin of data, so a recipient can check w
it came from. It also allows the integrity of the data to be verified.

Facilities included here allow an application to deal with evidence of a variety of typ
of actions or events. Two common types of non-repudiation evidence are the evide
of proof of creation of a message and proof of receipt of a message.

Non-repudiation of Creation protects against an originator's false denial of having
created a message. It is achieved at the originator by constructing and generating
evidence of Proof of Creation using non-repudiation services. This evidence may
sent to a recipient to verify who created the message, and can be stored and then
available for subsequent evidence retrieval.

Non-repudiation of Receipt protects against a recipient's false denial of having rece
a message (without necessarily seeing its content). It is achieved at the recipient
constructing and generating evidence of Proof of Receipt using the non-repudiatio
services. This is shown in Figure 2-14.

Figure 2-14 Proof of Receipt

One or more Trusted Third Parties need to be involved, depending on the choice
mechanism or policy.

Non-repudiation services may include:

• Facilities to generate evidence of an action and verify that evidence later.

          (plus message)
     evidence of creation

RecipientOriginator

 evidence of receipt
Security Service V1.5 Security Reference Model May 2000 2-19



2

he

and
a
SO

nce.

f
.

is
ible
nce
lso,
an be
• A delivery authority which delivers the evidence (often with the message) from t
originator to the recipient. Such a delivery authority may generateproof of origin
(to protect against a sender's false denial of sending a message or its content)
proof of delivery(to protect against a recipient's false denial of having received
message or its content). Non-repudiation of Origin and Delivery are defined in I
7498-2.

• An evidence storage and retrieval facility used when a dispute arises. An
adjudicator service may be required to settle the dispute, using the stored evide

Figure 2-15 Non-repudiation Services

The non-repudiation services illustrated in Figure 2-15 are based on the ISO non-
repudiation model; as the shaded box in the diagram indicates, this specification
supports only Evidence Generation and Verification, which provides:

• Generation of evidence of an action.

• Verification of evidence of an action.

• Generation of a request for evidence related to a message sent to a recipient.

• Receipt of a request for evidence related to a message received.

• Analysis of details of evidence of an action.

• Collection of the evidence required for long term storage. In this case, more
complete evidence may be needed.

The Non-repudiation Service allows an application to deal with a variety of types o
evidence, not just the non-repudiation of creation and receipt previously described

No Non-repudiation Evidence Delivery Authority is defined by this specification; it
anticipated that vendors will want to customize these authorities (which are respons
for delivering messages and related non-repudiation evidence securely in accorda
with specific non-repudiation policies) to meet specialized market requirements. A
no evidence storage and retrieval services are specified, as other object services c
used for this.

Object
A

Object
B

Service Req/Resp Dispute/Judgement

Non-repudiation service

Evidence
Generation

and
Adjudicator

Service Req/Resp

Evidence
Storage

and
RetrievalVerification

Delivery
Authority
2-20 Security Service V1.5 May 2000



2

was
.

,

re

y
o be

d

The
ake
re
o

ity
Note that this specification does not provide evidence that a request on an object
successfully carried out; it does not require use of non-repudiation within the ORB

2.1.8 Domains

A domain (as specified in the ORB Interoperability Architecture) is a distinct scope
within which certain common characteristics are exhibited and common rules
observed. There are several types of domain relevant to security:

• Security policy domain. The scope over which a security policy is enforced. The
may be subdomains for different aspects of this policy.

• Security environment domain. The scope over which the enforcement of a polic
may be achieved by some means local to that environment, so does not need t
enforced within the object system. For example, messages will often not need
cryptographic protection to achieve the required integrity when being transferre
between objects in the same machine.

• Security technology domain. Where common security mechanisms are used to
enforce the policies.

These can be independent of the ORB technology domains.

2.1.8.1 Security Policy Domains

A security policy domain is a set of objects to which a security policy applies for a
set of security related activities and is administered by asecurity authority. (Note that
this is often just called a security domain.) The objects are the domain members.
policy represents the rules and criteria that constrain activities of the objects to m
the domain secure. Security policies concern access control, authentication, secu
object invocation, delegation and accountability. An access control policy applies t
the security policies themselves, controlling who may administer security-relevant
policy information.

Figure 2-16 Security Policy Domains

Security policy domains provide leverage for dealing with the problem of scale in
security policy management (by allowing application of policy at a domain granular
rather than at an individual object instance granularity).

security
policy

management

Security Authority
Security Service V1.5 Security Reference Model May 2000 2-21



2

y-

s to

es.

be

y
e
ing

but

tors’

nt
Security policy domains permit application of security policy information to securit
unaware objects without requiring changes to their interfaces (by associating the
security policy management interfaces with the domain rather than with the object
which policy is applied).

Domains provide a mechanism for delimiting the scope of administrators’ authoriti

Policy Domain Hierarchies

A security authority must be identifiable and responsible for defining the policies to
applied to the domain, but may delegate that responsibility to a number of
subauthorities, forming subdomains where the subordinate authorities’ policies are
applied.

Subdomains may reflect organizational subdivisions or the division of responsibilit
for different aspects of security. Typically, organization-related domains will form th
higher-level superstructure, with the separation of different aspects of security form
a lower-level structure.

For example, there could be:

• An enterprise domain, which sets the security policy across the enterprise.

• Subdomains for different departments, each consistent with the enterprise policy
each specifying more specific security policies appropriate to that department.

With each department, authority may be further devolved:

• Authority for auditing could be the preserve of an audit administrator.

• Control of access to a set of objects could be the responsibility of a specific
administrator for those objects.

This supports what is recognized as good security practice (it separates administra
duties) while reflecting established organizational structures.

Figure 2-17 Policy Domain Hierarchies

Federated Policy Domains

As well as being structured into superior/subordinate relationships, security policy
domains may also be federated. In a federation, each domain retains most of its
authority while agreeing to afford the other limited rights. The federation agreeme
records:

Security Policy
Manager
2-22 Security Service V1.5 May 2000



2

e

B
rt it.

own
• The rights given to both sides, such as the kind of access allowed.

• The trust each has in the other.

It includes an agreement as to how policy differences are handled, for example, th
mapping of roles in one domain to roles in the other.

Figure 2-18 Federated Policy Domains

System- and Application-Enforced Policies

In a CORBA system, the “system” security policy is enforced by the distributed OR
and the Security services it uses and the underlying operating systems that suppo
This is the only policy that applies to objects unaware of security.

The application security policy is enforced by application objects, which have their
own security requirements. For example, they may want to control access to their
functions and data at a finer granularity than the system security policy provides.

Figure 2-19 System- and Application-enforced Policies

Overlapping Policy Domains

Not all policies have the same scope. For example, an object may belong to one
domain for access control and a different domain for auditing.

Figure 2-20 Overlapping Policy Domains

Security Policy
Manager

application security
policy domain

system security policy domain

Security Policy
Manager

audit domain

access control
domain
Security Service V1.5 Security Reference Model May 2000 2-23



2

, this
ins

y be
ct

e by
es

at

e in
dure

d,

ns.

to

can

re

ain,

the
In some cases, there may even be overlapping policies of the same type (however
specification does not require implementations to support overlapping policy doma
of the same type).

2.1.8.2 Security Environment Domains

Security policy domains specify the scope over which a policy applies. Security
environment domains are the scope over which the enforcement of the policies ma
achieved by means local to the environment. The environment supporting the obje
system may provide the required security, and the objects within a specific
environment domain may trust each other in certain ways. Environment domains ar
definition implementation-specific, as different implementations run in different typ
of environments, which may have different security characteristics.

Environment domains are not visible to applications or Security services.

In an object system, the cost of using the security mechanisms to enforce security
the individual object level in all environments would often be prohibitive and
unnecessary. For example:

• Preventing objects from interfering with each other might require them to execut
separate system processes or virtual machines (assuming the generation proce
could not ensure this protection) but, in most object systems, this would be
considered an unacceptable overhead, if applied to each object.

• Authenticating every object individually could also impose too large an overhea
particularly where:

• There is a large object population.

• There is high connectivity, and therefore a large number of secure associatio

• The object population is volatile, requiring objects to be frequently introduced
the Security services.

This cost can be reduced by identifying security environment domains where
enforcement of one or more policies is not needed, as the environment provides
adequate protection. Two types of environment domains are considered:

1. Message protection domains. These are domains where integrity and/or
confidentiality is available by some specific means, for example, an underlying
secure transport service is used. An ORB, which knows such protection exists,
exploit it, rather than provide its own message protection.

2. Identity domains. Objects in an identity domain can share the same identity.
Objects in the same identity domain:

• when invoking each other, do not need authentication to establish who they a
communicating with.

• are equally trusted by others to handle credentials received from a client. For
example, if a client is prepared to delegate its rights to one object in the dom
it is prepared to delegate the same rights to all of them. If any object in the
identity domain invokes a further object, that target object is prepared to trust
calling object based on the identity of its identity domain.
2-24 Security Service V1.5 May 2000



2

that
ied).

ity

ay
and

ion.
ple,
urity
gy

ey

cts.

they
Note that neither of these affect what access controls apply to the object (except in
if trust is required and is not established with this domain, then access will be den

2.1.8.3 Security Technology Domains

These are domains that use the same security technology for enforcing the secur
policy. For example:

• The same methods are available for principal authentication and the same
Authentication services are used.

• Data in transit is protected in the same way, using common key distribution
technology with identical algorithms.

• The same types of access control are used. For example, a particular domain m
provide discretionary access control using ACLs using the same type of identity
privilege attributes.

• The same audit services are used to collect audit records in a consistent way.

A particular security technology is normally used to authenticate principals and to
form security associations between client and object and handle message protect
(Different technologies may be able to use the same privilege attributes, for exam
the same access id and also the same audit id.) An important part of this is the sec
technology used for key distribution. There are two main types of security technolo
used for key distribution, both of which are available in commercial products:

• Symmetric key technology where a shared key is established using a trusted K
Distribution Service.

• Asymmetric (or “public”) key technology where the client uses the public key of
the target (certified by a Certification Authority), while the target uses a related
private key.

Public key technology is also the most convenient technology upon which to
implement non-repudiation, which has led to its use in several electronic mail produ

The CORBA security interfaces specified here are security mechanism neutral, so
can be implemented using a wide variety of security mechanisms and protocols.

2.1.8.4 Domains and Interoperability

Interoperability between objects depends on whether they are in the same:

• Security technology domain

• ORB technology domain

• Security policy domains

• Naming and other domains

The level of security interoperability fully defined in this CORBA security
specification is limited, though it includes an architecture that allows further
interoperability to be added.
Security Service V1.5 Security Reference Model May 2000 2-25



2

y

urity

ass
s a

e
l

mon

an

y
ere

in.
y a
y a

ally
The following diagram shows a framework of domains and is used to discuss the
interoperability goals of this specification.

Figure 2-21 Framework of Domains

Interoperating between Security Technology Domains

Sending a message across the boundary between two different security technolog
domains is only possible if:

• The communication between the objects does not need to be protected, so sec
is not used between them, or

• A security technology gateway has been provided, which allows messages to p
between the two security technology domains. A gateway could be as simple a
physically secure link between the domains and an agreement between the
administrators of the two domains to turn off security on messages sent over th
link. On the other hand, it could be a very complicated affair including a protoco
translation service with complicated key management logic, for example.

It is not a goal of this specification to define interoperability across Security
Technology Domains, and hence to specify explicit support for security technology
gateways. This is mainly because the technology is immature and appropriate com
technology cannot yet be identified. However, where the security technology in the
domains can support more than one security mechanism, this specification allows
appropriate matching mechanism to be identified and used.

Interoperating between ORB Technology Domains

If different ORB implementations are in the same security technology domain, the
should be able to interoperate via a CORBA 2 interoperability bridge. However, th
may still be restrictions on interoperability when:

• The objects are in different security policy domains, and the security attributes
controlling policy in one domain are not understood or trusted in the other doma
As previously described, crossing a security policy boundary can be handled b
security policy federation agreement. This can be enforced in either domain or b
gateway.

• The ORBs are in different naming or other domains, and messages would norm
be modified by bridges outside the trusted code of either ORB environment.
Security protection prevents tampering with the messages (and therefore any

ORB
Technology
Domain A

ORB
Technology
Domain B

CORBA 2
interoperability

bridge

Security Technology Domain 1

Security
Technology

Gateway

Security
Technology
Domain 2
2-26 Security Service V1.5 May 2000



2

hout
rity

and

g

ins.

rity

ging

the

ple,
.

n
ing

to a

s of
one
changes to object references in them). In general, crossing of such domains wit
using a Security Technology gateway is not possible if policy requires even integ
protection of messages.

2.1.9 Security Management and Administration

Security administration is concerned with managing the various types of domains
the objects within them.

2.1.9.1 Managing Security Policy Domains

For security policy domains, the following is required:

• Managing the domains themselves - creating, deleting them including controllin
where they fit in the domain structure.

• Managing the members of the domain, including moving objects between doma

• Managing the policies associated with the domains - setting details of the secu
policies as well as specifying which policies apply to which domains.

This specification focuses on management of the security policies. However, mana
policy domains and their members in general are expected to be part of the
Management Common Facilities, so only an outline specification is given here.

This specification includes a framework for administering of security policies, and
details of how to administer particular types of policy. For example, it includes
operations to specify the default quality of protection for messages in this domain,
policy for delegating credentials, and the events to be audited.

General administration of all access control policies is not detailed, as the way of
administering access control policies is dependent on the type of policy. For exam
different administration is needed for ACL-based policies and label-based policies
However, the administration of the standardDomainAccessPolicyis defined.

Access policies may userights to group operations for access control. Administratio
of the mapping of rights to operations is included in this specification. Such mapp
of rights to operations is used by the standardDomainAccessPolicy, and can also be
used by other access policies.

Interfaces for federation agreements allowing interaction with peer domains is left
later security specification.

2.1.9.2 Managing Security Environment Domains

For environment domains, an administrator may have to specify the characteristic
the environment and which objects are members of the domain. This will often be d
in an environment-specific way; therefore, no management interfaces for it are
specified here.
Security Service V1.5 Security Reference Model May 2000 2-27



2

ain.

be

ide

her

ed
both
to

re
ation

e

for
, to
ed

lete
,
ot
D,

rity
2.1.9.3 Managing Security Technology Domains

For security technology domains, administration may include:

• Setting up and maintaining the underlying Security services required in the dom

• Setting up and maintaining trust between domains in line with the agreements
between their management.

• Administering entities in the way required by this security technology. Entities to
administered include principals, which have identities, long-term keys, and
optionally privileged attributes.

Such administration is often security technology specific. Also, it may be done outs
the object system, as it is a goal of this specification to allow common security
technology to be used, and even allow a single user logon to object, as well as ot
applications. This specification does not include such security technology specific
administration.

2.1.10 Implementing the Model

This reference model is sufficiently general to cover a very wide variety of security
policies and application domains to allow conformant implementations to be provid
to meet a wide variety of commercial and government secure systems in terms of
security functionality and assurance. (Any implementation of this model will need
identify the particular security policies it supports.)

The model also allows different ways of putting together the trusted core of a secu
object system to address different requirements. There are a number of implement
choices on how to ensure that the security enforcement cannot be bypassed. This
enforcement could be performed by hardware, the underlying operating system, th
ORB core, or ORB services. Appendix E, “Guidelines for a Trustworthy System”
describes some of these options. (It is important when instantiating this architecture
a particular ORB product, or set of Security services supporting one or more ORBs
identify what portions of the model must be trusted for what. This should be includ
in a conformance statement as described in Appendix D).

2.2 Security Architecture

This section explains how the security model is implemented. It describes the comp
architecture as needed to support all feature packages described in Section 1.2.2
“CORBA Security and Secure Interoperability Feature Packages,” on page 1-10. N
all of these packages are mandatory for all implementors to support. See Appendix
“Conformance Details” for a definitive statement of conformance requirements.

This section starts by reviewing the different views that different users have of secu
in CORBA-compliant systems, as the security architecture must cater to these.

The structural model for security in CORBA-compliant systems is described. This
includes some expansion of the ORB service concept introduced into CORBA 2 to
support interoperability between ORBS.
2-28 Security Service V1.5 May 2000



2

;
m.

inst
sets
lines

and
A

lso

d the
y

oles

ly

ove
The security object models for the three major views (application development,
administration, and object system implementors) are then described.

2.2.1 Different Users’ View of the Security Model

The security model can be viewed from the following users’ perspectives:

• Enterprise management

• The end user

• The application developer

• Administration of an operational system

• The object system implementors

2.2.1.1 Enterprise Management View

Enterprise management are responsible for business assets including IT systems
therefore they have ultimate responsibility for protecting the information in the syste
The enterprise view of security is therefore mainly about protecting its assets aga
perceived threats at an affordable cost. This requires assessing the risks to the as
and the cost of countermeasures against them as described in Appendix E, “Guide
for a Trustworthy System”. It will require setting a security policy for protecting the
system, which the security administrators can implement and maintain.

Not all parts of an enterprise require the same type of protection of their assets.
Enterprise management may identify different domains where different security
policies should apply. Managers will need to agree how much they trust each other
what access they will provide to their assets. For example, when a user in domain
accesses objects in domain B, what rights should he have? One enterprise may a
interwork with domains in other enterprises.

Enterprise management therefore knows about the structure of the organization an
security policies needed in different parts of it. Security policy options supported b
the model include:

• A choice of access control policies. For example, controls can be based on job r
(or other attributes) and use ACL, capabilities, or label-based access controls.

• Different levels of auditing so choosing which events to be logged can be flexib
chosen to meet the enterprise needs.

• Different levels of protection of information communicated between objects in a
distributed system. For example, integrity only or integrity plus confidentiality.

The enterprise manager is not a direct user of the CORBA security system.

2.2.1.2 End User View

The human user is an individual who is normally authenticated to the system to pr
who he or she is.
Security Service V1.5 Security Architecture May 2000 2-29



2

llows

e
.

lege
him

ects

e

their
om
on,
em.

, an
e as

at

tect

n the

t

del
The user may take on different job roles which allow use of different functions and
data, thereby allowing access to different objects in the system. A user may also
belong to one or more groups (within and across organizations) which again imply
rights to access objects. A user may also have other privileges such as a security
clearance that permits access to secret documents, or an authorization level that a
the user to authorize purchases of a given amount.

The user is modeled in the system as an initiating principal who can have privileg
attributes such as roles and groups and others privileges valid to this organization

The user invokes objects to perform business functions on his behalf, and his privi
attributes are used to decide what he can access. His audit identity is used to make
individually accountable throughout the system. He has no idea of what further obj
are required to perform the business function.

The user view is described further in the security model in Section 2.1, “Security
Reference Model,” on page 2-1.

2.2.1.3 Application Developer View

The application developer is responsible for the business objects in the system: th
applications. His main concern is the business functions to be performed.

Many application developers can be unaware of the security in the system, though
applications are protected by it. So much of the security in the system is hidden fr
the applications. ORB security services are called automatically on object invocati
and both protect the conversation between objects and control who can access th

Some application objects need to enforce some security themselves. For example
application might want to control access based on the value of the data and the tim
well as the principal who initiated the operation. Also, an application may want to
audit particular security relevant activities.

The model includes a range of security facilities available for those applications th
want to use them. For example:

• The quality of protection for object invocations can be specified and used to pro
all communication with a particular target or just selected invocations.

• Audit can also be used independently of other security facilities and does not
require the application to understand other security issues.

• Other functions, such as user authentication or handling privilege attributes for
access control generally require more security understanding and operations o
objects, which represent the user in the system. However, this is still done via
generic security interfaces, which hide the particular security technology used.

One special type of application developer is also catered for. The “application” tha
provides the user interface (user sponsor or logon client) needs an authentication
interface capable of fitting with a range of authentication devices. However, the mo
also allows authentication to be done before calling the object system.
2-30 Security Service V1.5 May 2000



2

s,”

s,
ber

em.

sers

hat

ject
ight
the

s or

ent
The application view is described in Section 2.3, “Application Developer’s Interface
on page 2-71.

2.2.1.4 Administrator’s View

Administrators, like any other users, know about their job roles and other privilege
and expect these to control what they can do. In many systems, there will be a num
of different administrators, each responsible for administering only part of the syst
This may be partly to reduce the load on individual administrators, but partly for
security reasons, for example to reduce the damage any one person can do.

Administrators and administrative applications see more of the system than other u
or normal application developers. For example, the application developers see
individual objects whereas the administrator knows how these are grouped, for
example, in policy domains.

In an operational system, administrators will be responsible for creating and
maintaining the domains, specifying who should be members of the domain, its
location, etc. They will also be responsible for administering the security policies t
apply to objects in these domains.

An administrator may also be responsible for security attributes associated with
initiating principals such as human users, though this may be done outside the ob
system. This would include administration of privilege attributes about users, but m
also include other controls. For example, they might constrain the extent to which
user’s rights can be delegated.

The model does not include explicit management interfaces for managing domain
security attributes of initiating principals, though it does describe the resultant
information. Note that the security facilities described here are also applicable to
management. For example, management information needs to be protected from
unauthorized access and protected for integrity in transit, and significant managem
actions, particularly those changing security information, need to be audited.

The administrator’s view is further described in Section 2.4, “Administrator’s
Interfaces,” on page 2-116.

2.2.1.5 Object System Implementor’s View

Secure object system developers must put together:

• An ORB.

• Other Object Services and/or Common Facilities.

• The security services these require to provide the security features.

The system must be constructed in such a way as to make it secure.
Security Service V1.5 Security Architecture May 2000 2-31



2

32.
jects

sed
ary
l

ay
ty

if
ld be
the

rity

me
the
use

will
for

are

of
r
m.

o

The ORB implementor in a secure object system may use ORB Security services
during object invocation, as defined in Section 2.2.2, “Structural Model,” on page 2-
In addition, protection boundaries are required to prevent interference between ob
and will need controlling by the ORB and associated Object Adapter and ORB
services.

Certain interfaces are identified asLocality Constrained. These interfaces are
intended to be accessible only from within the context (e.g., process or RM-ODP
capsule) in which they are instantiated (i.e., from within the protection boundary
around that context). No object reference to these interfaces can therefore be pas
meaningfully outside of that context. The exact details of how this protection bound
is implemented is an implementation detail that the implementor of the service wil
need to provide in order to establish that the implementation is secure. Locality
constrained objects may not be accessible through the DII/DSI facilities, and they m
not appear in the Interface Repository. Any attempt to pass a reference to a locali
constrained object outside its locality, or any attempt to externalize it using
ORB::object_to_string will result in the raising of theCORBA::NO_MARSHAL
exception.

Object Service and Common Facilities developers may need to be security aware
they have particular security requirements (for example, functions whose use shou
limited or audited). However, like any application objects, most should depend on
ORB and associated services to provide security of object invocations.

The Security services implementor has to provide ORB Security services (for secu
of object invocations) and other security services to support applications’ view of
security as previously defined. The ORB Security services implementor shares so
application visible security objects such as a principal’s credentials, and also sees
security objects used in making security associations. The Security services should
the Security Policy and other security objects defined in this model to decide what
security to provide.

While these security objects may provide all the security required themselves, they
often call on external security services, so that consistent security can be provided
both object and other systems. The Security services defined in this specification
designed to allow for convenient implementation using generic APIs for accessing
external security services so it is easier to link with a range of such services. Use
such external security services may imply use of existing, nonobject databases fo
users, certificates, etc. Such databases may be managed outside the object syste

The Implementor’s view is specified in Section 2.5, “Implementor’s Security
Interfaces,” on page 2-143. The implications of constructing the system securely t
meet threats are described in Appendix E, “Guidelines for a Trustworthy System”.

2.2.2 Structural Model

The architecture described in this section sets the major concepts on which the
subsequent specifications are based.

The structural model has four major levels used during object invocation:
2-32 Security Service V1.5 May 2000



2

rity
are:

an

the
1. Application-level components, which may or may not be aware of security;

2. Components implementing the Security services, independently of any specific
underlying security technology. (This specification allows the use of an isolating
interface between this level and the security technology, allowing different secu
technologies to be accommodated within the architecture.) These components

• The ORB core and the ORB services it uses.

• Security services.

• Policy objects used by these to enforce the Security Policy.

3. Components implementing specific security technology.

4. Basic protection and communication, generally provided by a combination of
hardware and operating system mechanisms.

Figure 2-22 Structural Model

Figure 2-22 illustrates the major levels and components of the structural model,
indicating the relationships between them. The basic path of a client invocation of
operation on a target object is shown.

2.2.2.1 Application Components

Many application components are unaware of security and rely on the ORB to call
required security services during object invocation. However, some applications
enforce their own security and therefore call on security services directly (see The
Model as Seen by Applications, under Section 2.2.5, “Security Object Models,” on
page 2-41). As in the OMA, the client may, or may not, be an object.

Client

request request

ORB Core

Target
Object

ORB
Services

ORB
Services

Security
and other
Services

security technology

Basic Protection and Communications
Security Service V1.5 Security Architecture May 2000 2-33



2

The
t to

d by

ay

e

of

for
2.2.2.2 ORB Services

The ORB Core is defined in the CORBA architecture as “that part of the ORB that
provides the basic representation of objects and the communication of requests.”
ORB Core therefore supports the minimum functionality necessary to enable a clien
invoke an operation on a target object, with the distribution transparencies require
the CORBA architecture.

An object request may be generated within an implicit context, which affects the w
in which it is handled by the ORB, thoughnot the way in which a client makes the
request. The implicit context may include elements such as transaction identifiers,
recovery data and, in particular, security context. All of these are associated with
elements of functionality, termed ORB Services, additional to that of the ORB Cor
but, from the application view, logically present in the ORB.

Figure 2-23 ORB Services

Selection of ORB Services

The ORB Services used to handle an object request are determined by:

• The security policies that apply to the client and target object because of the
domains to which they belong, for example the access policies, default quality
protection.

• Other static properties of the client and target object such as the security
mechanisms and protocols supported.

• Dynamic attributes, associated with a particular thread of activity or invocation;
example, whether a request has integrity or confidentiality requirements, or is
transactional.

Client

ORB Core

Target
Object

ORB
Services

ORB
Services

Logical Object Request
2-34 Security Service V1.5 May 2000



2

use
ther
ay

ject
ent to
is

on

ties,
nt
with
tion

the

is

gh

rver
nd

s of

ible
A client's ORB determines which ORB Services to use at the client when invoking
operations on a target object. The target’s ORB determines which ORB Services to
at the target. If one ORB does not support the full set of services required, then ei
the interaction cannot proceed or it can only do so with reduced facilities, which m
be agreed to by a process of negotiation between ORBs.

Bindings and Object References at the Client

Before a client can use an object reference to invoke an operation of the target ob
in a secure way, a security association needs to be established associating the cli
the target object, through the particular object reference. This security association
sometimes referred to as thebinding. The creation and life-style of bindings are
implicitly managed by the ORBs and hence the only invariant that one can depend
is that a binding is established before an invocation takes place.

The ORB determines how to establish the binding using the policies, static proper
and dynamic properties associated with the client and target. At the client, the clie
environment together with an object reference of the target object has associated
it, those policies and static properties of the target object (e.g., the quality of protec
needed) that affect how the client's ORB establishes a binding to the object.

Associated with each binding is information specific to the particular usage by the
client of the object reference. A binding is uniquely associated with:

• Each object reference of the target object that is held by the client.

• State information that is unique to the association between the target object and
client through the specific object reference (e.g., access policy domain, security
context).

• An ORB instance in a process or capsule (c.f. RM-ODP[15]) in which the client
located.

A binding is distinct from the target object, though uniquely associated with it throu
the object reference. The lifetime of a binding is limited to that of the process or
capsule that it is associated with, though it may be shorter (e.g., when the object
reference to the target object is destroyed, the binding associated with the object
reference is also destroyed).

There is state information associated with the binding at both the client and the se
ends. This state information is local to the process or capsule in which the client a
the server reside, and its lifetime is the same as that of the binding. The state
associated with a binding is not accessible on the client side, since the implicitnes
the binding and the uncertainty about its life-style makes such information of
questionable value anyway. On the server side, some of this information is access
through operations of theCurrent object.
Security Service V1.5 Security Architecture May 2000 2-35



2

ices

ms

ply

ing
use
Figure 2-24 Object Reference

If a client requires to invoke operations of the same target object with different
invocation policies, it can do so by using theObject::set_policy_overrides
operation to create new object references with the desired policies (that differ from
those associated with the client’s environment through theCurrent object) installed as
overrides, and then use those new object references to carry out the invocations,

2.2.2.3 Security Services

In a secure object system, the ORB Services called will include ORB Security Serv
for secure invocation and access control.

ORB Security Services and applications may call on underlying security mechanis
for authentication, access control, audit, non-repudiation, and secure invocations.
These security services form the Security Replaceability packages.

2.2.2.4 Security Policies and Domain Objects

A security policy domain is the set of objects to which common security policies ap
as described in Security Policy Domains, under Section 2.1.8, “Domains,” on
page 2-21. The domain itself is not an object. However, there is a policy domain
manager for each security policy domain. This domain manager is used when find
and managing the policies that apply to the domain. The ORB and security services
these to enforce the security policies relevant to object invocation.

Client

ORB Core

Target
Object

ORB
Services

ORB
Services

 Request

binding binding

target obj ref

Current

Object Reference
2-36 Security Service V1.5 May 2000



2

t

ince

aid
by

d by

ject
ain.

s.)

en

re is
ing
hat

ins,
ing
le
port

ay
When an object reference is created by the ORB, it implicitly associates the objec
reference with one or more Security Policy domains as described in Administrative
Model, under Section 2.2.5, “Security Object Models,” on page 2-41. An
implementation may allow object references to be moved between domains later. S
the only way to access objects is through object references, associating object
references with policy domains and associated policies, implicitly associates the s
policies with the object associated with the object reference. Care should be taken
the applications that is creating object references usingPOA operations (See the
Portable Object Adaptor chapter of theCommon Object Request Broker: Architecture
and Specification) to ensure that object references to the same object are not create
the server of that object with different domain associations.

There may be several security policies associated with a domain, with a policy ob
for each. There is at most one policy of each type associated with each policy dom
(See Section 2.2.5.2, “Administrative Model,” on page 2-58, for a list of policy type
These policy objects are shared between objects in the domain, rather than being
associated with individual objects. (If an object needs to have an individual policy, th
there must be a domain manager for it.)

Figure 2-25 Domain Objects

Where an object reference is a member of more than one domain, for example, the
a hierarchy of domains, the object reference is governed by all policies of its enclos
domains. The domain manager can find the enclosing domain’s manager to see w
policies it enforces.

The reference model allows an object reference to be a member of multiple doma
which may overlap for the same type of policy (for example, be subject to overlapp
access policies). This would require conflicts among policies defined by the multip
overlapping domains to be resolved. The specification does not include explicit sup
for such overlapping domains and, therefore, the use of policy composition rules
required to resolve conflicts at policy enforcement time.

Policy domain managers and policy objects have two types of interfaces:

• The operational interfaces used when enforcing the policies. These are the
interfaces used by the ORB during an object invocation. Some policy objects m
also be used by applications, which enforce their own security policies.

policy
object

domain
manager

enclosing
domain managers
Security Service V1.5 Security Architecture May 2000 2-37



2

nd

h
he
e of

n it

f
re

)

e
em,
d to
ices

Bs
g

the

-API

ing

ish

not
n of
The caller asks for the policy of a particular type (e.g., the delegation policy), a
then uses the policy object returned to enforce the policy (as described in
Section 2.2.5.3, “The Model as Seen by the Objects Implementing Security,” on
page 2-62). The caller finding a policy and then enforcing it does not see the
domain manager objects and the domain structure.

• The administrative interfaces used to set security policies (e.g., specifying whic
events to audit or who can access objects of a specified type in this domain). T
administrator sees and navigates the domain structure, so is aware of the scop
what he is administering. (Administrative interfaces are described in
Section 2.2.5.2, “Administrative Model,” on page 2-58.)

Applications will often not be aware of security at all, but will still be subject to
security policy, as the ORB will enforce the policies for them. Security policy is
enforced automatically by the ORB both when an object invokes another and whe
creates another object.

An application that knows about security can also override certain default security
policy details. For example, a client can override the default quality of protection o
messages to increase protection for particular messages. (Application interfaces a
described in Section 2.2.5.1, “The Model as Seen by Applications,” on page 2-41.

Note that this specification does not include any explicit interfaces for managing th
policy domains themselves: creating and deleting them, moving objects between th
changing the domain structure and adding, changing and removing policies applie
the domains. Such interfaces are expected to be the province of other object serv
and facilities.

2.2.3 Security Technology

The object security services previously described insulate the applications and OR
from the security technology used. Security technology may be provided by existin
security components. These do not have domain managers or objects. Security
technology could be provided by the operating system. However, distributed,
heterogeneous environments are increasingly being used, and for these, security
technology is provided by a set of distributed security services. This architecture
identifies a separate layer containing those components which actually implement
security services. It is envisaged that various technologies may be used to provide
these and, furthermore, that a (set of) generic security interface(s) such as the GSS
will be used to insulate the implementations of the security services from detailed
knowledge of the underlying mechanisms. The range of services (and correspond
APIs) includes:

• The means of creating and handling the security information required to establ
security associations, including keys.

• Message protection services providing confidentiality and integrity.

The use of standard, generic APIs for interactions with external security services
only allows interchangeability of security mechanisms, but also enables exploitatio
existing, proven implementations of such mechanisms.
2-38 Security Service V1.5 May 2000



2

he
in
urity
ent

ower
n

y do

ge.

s on

of

y

and
e
d by
ce,

e

s
ross
ans
2.2.4 Basic Protection and Communications

2.2.4.1 Environment Domains

As described in Section 2.1.8.2, “Security Environment Domains,” on page 2-24, t
way security policies are enforced can depend on the security of the environment
which the objects run. It may be possible to relax or even dispense with some sec
checks in the object system on interactions between objects in the same environm
domain. For example, in a message protection domain where secure transport or l
layer communications is provided, encryption is not needed at the ORB level. In a
identity domain, objects may share a security identity and so dispense with
authenticating each other. Environment domains are implementation concepts; the
not have domain managers.

Environment domains can be exploited to optimize performance and resource usa

2.2.4.2 Component Protection

The maintenance of integrity and confidentiality in a secure object system depend
proper segregation of the objects, which may include the segregation of security
services from other components. At the lowest level of this architecture, Protection
Domains, supported by a combination of hardware and software, provide a means
protecting application components from each other, as well as protecting the
components that support security services. Protection Domains can be provided b
various techniques, including physical, temporal, and logical separation.

The Security Architecture identifies various security services, which mediate
interactions between application level components: clients and target objects. The
Security Object Models show how these mechanisms can themselves be modeled
implemented in terms of additional objects. However, security services can only b
effective if there is some means of ensuring that they are always invoked as require
security policies: it must be possible to guarantee, to any required level of assuran
that applications cannot bypass them. Moreover, security services themselves, lik
other components, must be subject to security policies.

The general approach is to establishprotection boundaries around groups of one or
more components which are said to belong to aprotection domain. Components
belonging to a protection domain are assumed to trust each other, and interaction
between them need not be mediated by security services, whereas interactions ac
boundaries may be subject to controls. In addition, it is necessary to provide a me
of establishing a trust relationship between components, allowing them to interact
across protection boundaries, in a controlled way, mediated by security services.
Security Service V1.5 Security Architecture May 2000 2-39



2

the

must
y

t of

aries,
e-

mple,

e for

ed.

.
g to
Figure 2-26 Controlled Relationship

In this architecture, the trusted components supporting security services are
encapsulated by objects, as described in Section 2.2.5.3, “The Model as Seen by
Objects Implementing Security,” on page 2-62. Clearly, objects that encapsulate
sensitive security information must be protected to ensure that they can only be
accessed in an appropriate way.

Figure 2-27 Object Encapsulation

Protection boundaries and the controlled relationships that cross those boundaries
inevitably be supported by functionality more fundamental than that of the Securit
Object Models, and invariably requires a combination of hardware and operating
system mechanisms. Whichever way it is provided, this functionality constitutes par
the Trusted Computing Base.

Protection boundaries may be created by physical separation, interprocess bound
or within process access control mechanisms (e.g., multilevel “onionskin” hardwar
supported access control). Less rigorous protection may be acceptable in some
circumstances, and in such cases protection boundaries can be provided, for exa
by using appropriate compilation tools to conceal protected interfaces and data.

The architecture is defined in a modular way so that, where necessary, it is possibl
implementations to create protection boundaries between:

• Application components, which do not trust each other;

• Components supporting security services and other components;

• Components supporting security services and each other.

In addition, controlled communication across protection boundaries may be requir
In such cases, it must be possible to constrain components within a protection
boundary to interact with components outside the protection boundary only via
controlled communications paths (it must not be possible to use alternative paths)
Such communication may take many forms, ranging from explicit message passin
implicit sharing of memory.

Protection
Domain A

Protection
Domain B

Controlled
Relationship

Protection
Domain A

Protection
Domain B

Security Service
2-40 Security Service V1.5 May 2000



2

n
ven.

ore
to
h

s

rily

ject
2.2.5 Security Object Models

This section describes the objects required to provide security in a secure CORBA
system from three viewpoints:

1. The model as seen by applications.

2. The model as seen by administrators and administrative applications.

3. The model as seen by the objects implementing the secure object system.

For each viewpoint, the model describes the objects and the relationships betwee
them, and outlines the operations they support. A summary of all objects is also gi

2.2.5.1 The Model as Seen by Applications

Many applications in a secure CORBA system are unaware of security, and theref
do not call on the security interfaces. This subsection is therefore mainly relevant
those applications that are aware of and utilize security. Facilities available to suc
applications are:

• Finding what security features this implementation supports.

• Establishing a principal’s credentials for using the system. Authenticating the
principal may be necessary.

• Selecting various security attributes (particularly privileges) to affect later
invocations and access decisions.

• Making a secure invocation.

• Handling security at a target object and at intermediates in a chain of objects,
including use of credentials for application control of access and delegation.

• Auditing application activities.

• Non-repudiation facility -- generation and verification of evidence so that action
cannot be repudiated.

• Finding the security policies that apply to this object.

The Security Service interfaces that are available to the application writer are prima
found in theSecurityLevel1, SecurityLevel2, NRservice, andSecurityAdmin
modules.

Finding Security Features

An application can find out what security features are supported by this secure ob
implementation. It does this by calling on the ORB toget_service_information .
Information returned includes the security functionality level and options supported
and the version of the security specification to which it conforms. It also includes
security mechanisms supported (though the ORB Security Services, rather than
applications, need this).
Security Service V1.5 Security Architecture May 2000 2-41



2

im to

ibed

er

may
n is
Establishing Credentials

If the principal has already been authenticated outside the object system, then
Credentials can be obtained fromCurrent .

If the principal has not been authenticated, but is only going to use public services
which do not require presentation of authenticated privileges, aCredentials object may
be created without any authenticated principal information.

If the principal has not been authenticated, but is going to use services that need h
be, then authentication is needed as shown in Figure 2-28.

Figure 2-28 Authentication

User sponsor

The user sponsor is the code that calls the CORBA Security interfaces for user
authentication. It need not be an object, and no interface to it is defined. It is descr
here so that the process ofCredentials acquisition may be understood.

The user provides identity and authentication data (such as a password) to the us
sponsor, and this calls on thePrincipal Authenticator object, which authenticates the
principal (in this case, the user) and obtainsCredentials for it containing authenticated
identity and privileges.

The user sponsor represents the entry point for the user into the secure system. It
have been activated, and have authenticated the user, before any client applicatio
loaded. This allows unmodified, security-unaware client applications to have
Credentials established transparently, prior to making invocations.

There is no concept of a target object sponsor.

user

..

Principal
Authenticator Credentials Currentcreate

User
Sponsor Client

request

ORB
2-42 Security Service V1.5 May 2000



2

e

kes

d
and

t.

r
aces

If a
ns in
has

n

Principal Authenticator

ThePrincipal Authenticator object is the application-visible object responsible for th
creation ofCredentials for a given principal. This is achieved in one of two ways. If
the principal is to be authenticated within the object system, the user sponsor invo
the authenticate operation of thePrincipal Authenticator object (and
continue_authentication if needed for multiexchange authentication dialogues).

Credentials

A Credentials object holds the security attributes of a principal. These security
attributes include its authenticated (or unauthenticated) identities and privileges an
information for establishing security associations. It provides operations to obtain
set security attributes of the principal it represents.

There may be credentials for more than one principal, for example, the initiating
principal who requested some action and the principal for the current active objec
Credentials are used on invocations and for non-repudiation.

There is anis_valid operation to check if the credentials are valid and arefresh
operation to refresh the credentials if possible.

Current

The Current object represents the current execution context at both client (both fo
object or non-object clients) and target objects. In a secure environment, the interf
SecurityLevel1::Current which is derived fromCORBA::Current and
SecurityLevel2::Current which is derived fromSecurityLevel1::Current , give
access to security information associated with the execution context.Current gives
access to theCredentials associated with the execution environment. Object
invocations useCredentials in Current , unless they have been overridden, by a
security aware client, in the specific object reference being used for the invocation.
user sponsor is used, it should set the user’s credentials for subsequent invocatio
Current . This may also be done as the result of initializing the ORB when the user
been authenticated outside the object system. This allows a security-unaware
application to utilize the credentials without having to perform any explicit operatio
on them.

At target and intermediate objects, otherCredentials are also available viaCurrent .

Handling Multiple Credentials

An application object may use differentCredentials with different security
characteristics for different activities.
Security Service V1.5 Security Architecture May 2000 2-43



2

ry,

nt

e a
ling

e
ls. It
Figure 2-29 Multiple Credentials

The Credentials::copy operation can be used to make a copy of theCredentials
object. The newCredentials object (i.e., the copy) can then be modified as necessa
using its interface, before it is used in an invocation.

When all required changes have been made, theCurrent::set_credentials operation
can be used to specify a differentCredentials object as the default for subsequent
invocations.

At any stage, a client or target object can find the default credentials for subseque
invocations by callingCurrent::get_credentials , asking for the invocation
credentials. These default credentials will be used in all invocations using object
references in which the invocation credentials have not been overridden.

Selecting Security Attributes

A client may require different security for different purposes, for example, to enforc
least privilege policy and so specify that limited privileges should be used when cal
particular objects, or collections of objects, and restrict the scope to which these
privileges are propagated. A client may also want to protect conversations with
different targets differently.

There are two ways to change security attributes for a principal:

1. Setting attributes on the credentials for that principal. If attributes are set on th
credentials, these apply to subsequent object invocations using those credentia
can therefore apply to invocations of many target objects.

2. Overriding attributes on the target object reference. Attributes thus set apply to
subsequent invocations, which this client makes using this reference.

copyCredentials Credentials Current

Object
(client or
target)

set_credentials(invocation credentials)

Copy
2-44 Security Service V1.5 May 2000



2

iated

he
ay
set

ded

cified
” on

tion.

t

s the

e has
In both cases, the change applies immediately to further object invocations assoc
with these credentials or this object reference.

Figure 2-30 Changing Security Attributes

A wider range of attributes can be set on the credentials than on a specific object
reference. Operations available include:

• set_privileges to set privileges in the credentials. The system will reject an
attempt to set privileges if the calling principal is not entitled to one or more of t
requested privileges. There may be additional restrictions on which privileges m
be claimed if the caller is an intermediate in a delegated call chain attempting to
privileges on delegatedCredentials.

Setting any of these attributes may result in a new security association being nee
between this client and target.

Note – This specification does not contain an operation to restrict when and where
these privileges can be used in target objects or delegated, though this may be spe
in the future (see Appendix F, Section F.12, “Target Control of Message Protection,
page F-5).

A client may want to use different privileges or controls when invoking different
targets. It can do this by obtaining a new object reference using the
set_policy_overrides specifying the invocation credentials policy to be used with
that target, and then use the object reference thus obtained to carry out the invoca

A client may want to specify that a particular quality of protection applies only to
selected invocations of a target object. For example, it may want confidentiality of
selected messages. The client can do this by usingset_policy_overrides , specifying
a QOP Policy on the new object reference. It can continue to use the original objec
reference for those invocations where confidentiality is no longer required.

The set_policy_overrides operation returns a new object reference to the same
target object as the one on which this operation is invoked. This new reference ha
policy overrides set in it. Any invocations through this new reference will use the
overrides set in the reference. The creation of this newly annotated object referenc
no effect on the target object.

Client Credentials

Object

set_privileges

set_policy_overrides

for QOP Policy and Invocation Credentials Policy
Security Service V1.5 Security Architecture May 2000 2-45



2

the

he

es
en
ess
on
Equivalentget_ operations are also provided to permit an application to determine
security specific options currently requested, for exampleget_attributes (privileges,
and other attributes such as audit id).

Thesecurity features, invocation credentials, qop,andmechanismrelated policies that
are in effect on a given object reference can be obtained by using theget_policy
operation asking for the appropriate type of policy object.

Making a Secure Invocation

A secure invocation is made in the same way as any other object invocation, but t
actual invocation is mediated by the ORB Security Services, invisibly to the
application, which enforce the security requirements, both in terms of policy and
application preference. The following diagram shows an application making the
invocation, and the ORB Security Services utilizing the security information in
Current , and hence theCredentials there.

Figure 2-31 Making a Secure Invocation

Note – For any given invocation, it is target and client security policy that determin
which (if any) ORB Security Services mediate that invocation. If the policy for a giv
invocation requires no security, then no services will be used. Similarly, if only acc
control is required, then only the ORB Security Service responsible for the provisi
of access control will be invoked.

Client

request request

ORB Core

Target
Object

ORB

Services
Security

ORB

Services
Security

target obj ref

Current
2-46 Security Service V1.5 May 2000



2

e

the

ten
n.
t, as
Security at the Target

At the target, as at the client, theCurrent object is the representative of the local
execution context within which the target object’s code is executing. TheCurrent
object can be used by the target object, or by ORB and Object Service code in th
target object’s execution context, to obtain security information about an incoming
security association and the principal on whose behalf the invocation was made.

Figure 2-32 Target Object Security

A security-aware target application may obtain information about the attributes of
principal responsible for the request by invoking theCurrent::get_attributes
operation. The target normally usesget_attributes to obtain the privilege attributes it
needs to make its own access decisions.

WhenCurrent::get_attributes is invoked from the target object it returns the
attributes from the incomingCredentials from the client. When
Current::get_attributes is invoked by a client the attributes from theCredentials of
the user (e.g., the one that was created by thePrincipalAuthenticator ) is returned.
Invoking Credentials::get_attribute always returns the attributes contained in that
Credentials object.

Intermediate Objects in a Chain of Objects

When a client calls a target object to perform some operation, this target object of
calls another object to perform some function, which calls another object and so o
Each intermediate object in such a chain acts first as a target, and then as a clien
shown in Figure 2-33 on page 2-48.

Target
Object

request

application
access decision

Current Credentials

get_attributes
Security Service V1.5 Security Architecture May 2000 2-47



2

s
r the
n.
nd
the
l be
Figure 2-33 Security-unaware Intermediate Object

For a security-unaware intermediate object,Current has a reference to the security
context established with the incoming client. When this intermediate object invoke
another target, either the delegated credentials from the client or the credentials fo
intermediate object’s principal (or both) become the current ones for the invocatio
The security policy for this intermediate object governs which credentials to use, a
the ORB Security Services enforce the policy, passing the required credentials to
target, subject to any delegation constraints. The intermediate object’s principal wil
authenticated, if needed, by the ORB Security Services.

A security-aware intermediate object can:

• Use the privileges of any delegated credentials for access control.

• Decide which credentials to use when invoking further targets.

• Restrict the privileges available via these credentials to further clients (where
security technology permits).

incoming request

Current

Credentials
(delegated and/or

object’s own)

Intermediate Object
(acts as target, then client)

to next targetrequest
2-48 Security Service V1.5 May 2000



2

” on

the
han

ify
on.

the
Figure 2-34 Security-aware Intermediate Object

After a chain of object calls, the target can callCurrent::get_attributes as
previously described. Note that this call always obtains the privilege and other
attributes associated with the first of the received credentials.

The target can use thereceived_credentials attribute ofCurrent to get the
incoming credentials. After a composite delegation (see Section 2.1.6, “Delegation,
page 2-13), the credentials are of the initiator and immediate invoker. After traced
delegation, credentials for all intermediates in the chain will be present (as well as
initiator). If a target object receives a request which includes credentials for more t
one principal, it may choose which privileges to use for access control and which
credentials to delegate, subject to policy.

An intermediate object may wish to make a copy of the incoming credentials, mod
and then delegate them, though not all implementations will support this modificati
In this case, it must acquire a reference to the incoming credentials (using the
received_credentials attribute ofCurrent ), and then use
Credentials::set_privileges to modify them. Finally it can call
Current::set_credentials to make the received credentials the default ones for
subsequent invocations. When thereceived_credentials are passed to
set_credentials , whether it is a delegation or not needs to be specified to the
set_credentials operation, and it takes appropriate action.

If the intermediate object wishes to change the association security defaults (for
example, the quality of protection) for subsequent invocations to a specific target
object, it can do so by using theObject::set_policy_overrides operation to create a
copy of the object reference to the target with the required QOP set as override in
object reference thus obtained. The overridden QOP will apply to subsequent
invocations through this new reference.

incoming request

Current

received

Intermediate Object
(acts as target, then client)

to next targetrequest

credentials own
credentials

invocation
credentials

get_credentials set_credentials
Security Service V1.5 Security Architecture May 2000 2-49



2

me
In

ther

s to

ls,

ify

ons.
arget
icated
hey

.

s

ke
r.

ilar
rom
as
The intermediate object may be a principal and wish to use its own identity and so
specific privileges in further invocations, rather than delegating the ones received.
this case, it can callauthenticate operation of thePrincipalAuthenticator to obtain
the appropriate credential, and then callCredentials::set_privileges to establish the
appropriate rights. After doing this, it can useCurrent::set_credentials to establish
its credential as the default for future invocations.

If the intermediate does not have its own individualCredential object (for example, as
it does not have an individual security name) but instead shares credentials with o
objects, it can us theown_credentials attribute ofCurrent to get a copy of the
Credentials (which will have been set up automatically). It can then do a
Credentials::copy and then aCredentials::set_privileges , etc. on these, as
appropriate and then use it to obtain a new object reference for the object it intend
invoke, with invocation credentials policy overridden using theCredentials
constructed above.

If it wants to use composite delegation with a modified version of its own credentia
it should callCurrent::set_credentials (specifying its own credentials) and the
required delegation mode before making the invocation. Note that this will not mod
the credentials shared with other objects.

Security Mechanisms

Applications are normally aware of the security mechanism used to secure invocati
The secure object system is aware of the mechanisms available to both client and t
object and can choose an acceptable mechanism. However, some security-sophist
applications may need to know about, or even control the choice of mechanisms. T
can get information on the currently in effect mechanism policy by using the
get_policy operation of the object reference. They can do invocations using a
different mechanism from the default by usingset_policy_overrides operation of
the object reference to obtain a new object reference with the desired mechanism
policy set as override in it and use it for invocations that need the new mechanism

Application Access Policies

Applications can enforce their own access policies. No standard application acces
policy is defined, as different applications are likely to want different criteria for
deciding whether access is permitted. For example, an application may want to ta
into account data values such as the amount of money involved in a funds transfe

However, it is recommended that the application use an access decision object sim
to the one used for the invocation access policy. This is to isolate the application f
details of the policy. Therefore, the application should decide if access is needed
shown in Figure 2-35 on page 2-51.
2-50 Security Service V1.5 May 2000



2

f
it is

ccess
to
to the

using
el,”

it

h
dit

ct

ype
n

e,
els.
Figure 2-35 access_allowed Application

The application can specify the privileges of the initiating principal and a variety o
authorization data, which could include the function being performed, and the data
being performed on.

An application access policy can be used to supplement the standard invocation a
policy with an application-defined policy. Such a policy might, for example, take in
account the parameters to the request. In this case, the authorization data passed
application-defined policy would be likely to include the request’s operation,
parameters, and target object.

The application access policy could be associated with the domain, and managed
the domain structure as for other policies (see Section 2.2.5.2, “Administrative Mod
on page 2-58). In this case, the application obtains theAccess Policyobject as shown
in Figure 2-36.

Figure 2-36 get_policy Application

However, the application could choose to manage its access policy differently.

Auditing Application Activities

Applications can enforce their own audit policies, auditing their own activities. Aud
policies specify the selection criteria for deciding whether to audit events.

As for application access policies, application audit policies can be associated wit
domains and managed via the domain structure. No standard application level au
policy is specified, as different applications may want to use different selectors in
deciding which events to audit. Application events are generally not related to obje
invocations. Applications can provide their own audit policies, which use different
criteria. The most common selectors for these audit policies to use are the event t
and its success or failure, theaudit_id and the time. (Management of such policies ca
generally be done using the interfaces for audit policy administration defined in
Section 2.4.5, “Audit Policies,” on page 2-131, by specifying new selectors,
appropriate to the application concerned.)

Whether or not the application uses an audit policy, it uses anAudit Channel object to
write the audit records. One Audit Channel object is created at ORB initialization tim
and this is used for all system auditing. Applications can use different audit chann

Access
Application

access_allowed

Object
Decision

CurrentApplication
get_policy(application access)
Security Service V1.5 Security Architecture May 2000 2-51



2

ller.

dit

her

ctors
the

e,
The way an Audit Channel object handles the audit records is not visible to the ca
It may filter them, route them to appropriate audit trails, or cause event alarms.
Different Audit Channel objects may be used to send audit records to different au
trails.

Applications and system components both invoke theaudit_write operation to send
audit records to the audit trail.

Figure 2-37 audit_write Application

If an application is using an audit policy administered via domains, it uses anAudit
Decisionobject (see Section 2.3.8, “Security Audit,” on page 2-100) to decide whet
to audit an event. It can find the appropriateAudit Decision object using the
audit_decision attribute ofCurrent as follows.

Figure 2-38 Audit Decision Object

The application invokes theaudit_needed operation of theAudit Decision object,
passing the values required to decide whether auditing is needed. (This set of sele
could include, for example, the type of event, its success or failure, the identity of
caller, the time, etc. See administration of audit policies in Section 2.3.8, “Security
Audit,” on page 2-100.)

The audit channel to be used in conjunction with an audit policy object can be
identified to the audit policy object with an audit channel id. TheAudit Decision
object uses thisAudit Channel Id to gain access to the correspondingAudit Channel
and return it to the user. Thus the application can use anAudit Channel associated
with the application (and these can link into the system audit services). If so, the
application uses theaudit_channel attribute of the Audit Decision object to find the
Audit Channel object to use. However, applications can create their ownAudit
Channelswith the help of the underlying audit service, and register theirAudit
Channel Ids with the appropriateAudit Policy object. The association between the
Audit Channel Id and the audit channel is maintained by the underlying audit servic
which is not specified in this chapter.

Audit ChannelApplication
audit_write

Audit DecisionApplication
audit_needed

audit_channel Object

Current

audit_decision
2-52 Security Service V1.5 May 2000



2

ed

on

f
d.
ence

uded

(or

tials

n
.

Finding What Security Policies Apply

An application may want to find out what policies the system is enforcing on its
behalf. For example, it may want to know the default quality of protection to be us
by default for messages or for non-repudiation evidence.

To do this, it can callCurrent::get_policy , and then the appropriateget_ operation
of the policy object obtained as defined in Section 2.4, “Administrator’s Interfaces,”
page 2-116 (if permitted).

Non-repudiation

The non-repudiation services in this specification provide generation of evidence o
actions and later verification of this evidence, to prove that the action has occurre
There is often data associated with the action, so the service needs to provide evid
of the data used, as well as the type of action.

These core facilities can be used to build a range of non-repudiation services. It is
envisioned thatdelivery serviceswill be implemented to deliver this evidence to where
it is needed andevidence storeswill be built for use by adjudicators. As different
services may have different requirements for these, interfaces for them are not incl
in this specification.

Non-repudiation Credentials and Policies

Non-repudiation operations are performed onNRCredentials. As for any other
Credentials object, these hold the identity and attributes of a principal. However, in
this case, the attributes include whatever is needed for identifying the user for
generating and checking evidence. For example, it might include the principal’s key
provide access to it) as needed to sign the evidence.

NRCredentials are available via theCurrent object as for otherCredentials objects,
and support the operations defined for credentials previously described. The creden
to be used for non-repudiation can be specified using theset_credentials operation
on Current with a type ofNRCredentials.

An application can set security attributes related to non-repudiation using the
NRCredentials::set_NR_features operation.

Figure 2-39 set_NR_features Operation

Theset_NR_features can be used to specify, for example, the quality of protectio
and the mechanism to be used when generating evidence using these credentials

NRCredentialsApplication
set_NR_features
Security Service V1.5 Security Architecture May 2000 2-53



2

ned

e
lied

e

s the

ble.

rated

ing

is

n
s of

the
he
ce,
By default, the features are those associated with the non-repudiation policy obtai
by invoking Current::get_policy specifyingSecurity::SecNonRepudiation .
However, non-repudiation policies may come from other sources. For example, th
policy to be used when generating evidence for a particular recipient may be supp
by that recipient.

There is anNRCredentials::get_NR_features operation equivalent to
set_NR_features .

Evidence generation and verification operations are also performed onNRCredentials
objects. These are described next.

Using Non-Repudiation Services

An application can generate evidence associated with an action so that it cannot b
repudiated at a later date. All evidence and related information is carried in non-
repudiation tokens. (The details of these are mechanism specific.)

The application decides that it wishes to generate some proof of an action and call
generate_token operation of anNRCredentials object.

Figure 2-40 generate_token Operation

This evidence is created in the form of a non-repudiation token rendered unforgea
Generation of the token uses the initiating principal’s security attributes in the
NRCredentials (normally a private key), for example, to sign the evidence.

Depending on the underlying cryptographic techniques used, the evidence is gene
as:

• A secure envelope of data based on symmetric cryptographic algorithms requir
what is termed to be a trusted third party as the evidence generating authority.

• A digital signature of data based on asymmetric cryptographic algorithms which
assured by public key certificates, issued by a Certification Authority.

Depending on the non-repudiation policy in effect for a specific application and the
legal environment, additional information (such as certificates or a counter digital
signature from a Time Stamping Authority) maybe required to complete the non-
repudiation information. A time reference is always provided with a non-repudiatio
token. A Notary service may be required to provide assurance about the propertie
the data.

Complete Evidence

Non-repudiation evidence may have to be verified long after it is generated. While
information necessary to verify the evidence (e.g., the public key of the signer of t
evidence, the public key of the trusted time service used to countersign the eviden

NRCredentialsApplication generate_token
(e.g. proof of creation)
2-54 Security Service V1.5 May 2000



2

rily
e

ide

e.

of

re.

e
two

and

ring

n of
the details of the policy under which the evidence was generated, etc.) will ordina
be easily accessible at the time the evidence is generated, that information may b
difficult or impossible to assemble a long time afterward.

The CORBA Non-repudiation Service provides facilities for incorporating all
information necessary for the verification of a piece of non-repudiation evidence ins
the evidence token itself. A token including both non-repudiation evidence and all
information necessary to verify that evidence is said to contain “complete” evidenc

There may be policy-related limitations on the time periods during which complete
evidence may be formed. For example, Non-repudiation policy may permit addition
the signer’s public key to the evidence only after expiration of the interval, during
which the signer may permissibly declare that key to have been compromised.
Similarly, the policy may require application of the Trusted Time Service
countersignature within a specified interval after application of the signer’s signatu

To facilitate the generation of complete evidence, the information returned from th
calls which verify evidence and request formation of complete evidence, includes
indicators (complete_evidence_before andcomplete_evidence_after )
indicating the earliest time at which complete evidence may usefully be requested
the latest time at which complete evidence can successfully be formed.

A call to verify_evidence before complete evidence can be formed may result in a
response declaring the evidence to be “conditionally valid.” This means that the
evidence is not invalid at the current time, but a future event (e.g., the signer decla
his key compromised) might cause the evidence to be invalid when complete.

Figure 2-41 on page 2-56 illustrates the policy considerations relating to generatio
complete evidence, and the sequence of actions involved in generating and using
complete evidence.
Security Service V1.5 Security Architecture May 2000 2-55



2

is

cy,
se

tures

riate,
Figure 2-41 Non-repudiation Service

An application may receive a token and need to know what sort of token it is. This
done usingget_token_details . When the token contains evidence,
get_token_details can be used to extract details such as the non-repudiation poli
the evidence type, the originator’s name, and the date and time of generation. The
details can be used to select the appropriate non-repudiation policy and other fea
(usingset_NR_features ), as necessary for verifying the evidence. When the token
contains a request to send back evidence to one or more recipients, then if approp
evidence can be generated.

(  <                           >                                                )

trusted time service
countersignature
window

user key repudiation window

Time

Non-Repudiation Service

event
data

evidence
token

evidence
token
with
trusted
timestamp

OK

complete_evidence_before complete_evidence_after

form_complete_evidence

form_
complete_
evidence

verify_
evidence

generate_
token

evidence
token

complete
2-56 Security Service V1.5 May 2000



2

at

es
An application verifies the evidence using theverify_evidence operation.

Figure 2-42 verify_evidence operation

Verification of non-repudiation tokens uses information associated with the Non-
repudiation Policy applicable to the non-repudiation token and security information
about the recipient who is verifying the evidence (normally the public key from a
Certification Authority and a set of trust relationships between Certification
Authorities).

Using Non-Repudiation for Receipt of Messages

An application receiving a message with proof of origin may handle it as shown in
Figure 2-43.

Figure 2-43 Proof of Origin Message

• The application receives the incoming message with a non-repudiation token th
has been generated by the originator.

• The application now wishes to know the type of token that it has received. It do
this by calling theNRCredentials::get_token_details operation. The token may
be:

• A request that evidence be sent back (such as an acknowledge of receipt)

• Evidence of an action (such as a proof of creation)

• Both evidence and a request for further evidence.

• The application’s next action depends on which of the three cases applies.

• In the first case, the application verifies that it is appropriate to generate the
requested evidence and, if so, generates that evidence using
NRCredentials::generate_token .

Application NRCredentialsverify_evidence

NRCredentials NRCredentials

Application
Object

incoming request
with message plus
evidence e.g. proof
of origin

deliver message
and evidence to
originator e.g.
proof of receipt

get_token_details
& verify_evidence
e.g. proof of origin

generate_evidence
e.g. proof of receipt
Security Service V1.5 Security Architecture May 2000 2-57



2

ence

,

tore
. It

e
as

ns

bed
• In the second case, the application retrieves the data associated with the evid
if it is outside the token, and verifies the evidence using
NRCredentials::verify_evidence , presenting the token alone or the
concatenation of the token and the data.

• In the last case, the application verifies the received evidence by first calling
NRCredentials::verify_evidence , and then generating evidence if appropriate
as in the first case.

• If the application receives a token that contains valid evidence, and wishes to s
it for later use, it needs to make sure that it holds all the necessary information
may need to callNRCredentials::form_complete_evidence in order to get the
complete evidence needed when this could not be provided using the verify
operation.

• When the application has generated evidence as the result of a request from th
originator of the message, the application must send it to the various recipients
indicated in the NR token received.

Using Non-repudiation Services for Adjudication

Adjudication applications use theNRCredentials::verify_evidence operation,
which must return complete evidence to settle disputes.

2.2.5.2 Administrative Model

The administrative model described here is concerned with administering security
policies.

• Administration of security environment domains and security technology domai
may be implementation specific, so it is not covered here. This means
administrating security technology specific objects is out of the scope of this
specification.

• Explicit management of nonsecurity aspects of domains is not covered.

Administrative activities covered here are:

• Creating objects in a secure environment subject to the security policies

• Finding the domain managers that apply to this object.

• Finding the policies for which these domain managers are responsible.

• Setting security policy details for these policy objects.

• Specifying which rights give access to which operations in support of access
policies.

The model used here is not specific to security, though the specific policies descri
are security policies.

Security Policies

Security policies may affect the security enforced:
2-58 Security Service V1.5 May 2000



2

on

in

e

ge

se

ts in

as
ir

ged

n

e is
• By applications. In general, enforcing policy within applications is an application
concern, so it is not covered by this specification. However, where the applicati
uses underlying security services, it will be subject to their policies.

• By the ORB Security Services during object invocation (the main focus of this
specification).

• In other security object services, particularly authentication and audit.

• In any underlying security services. (In general, this is not covered by this
specification, as these security services are often security technology specific.)

This specification defines the following security policy types:

• Invocation access policy
The object that implements the access control policy for invocations of objects
this domain.

• Invocation audit policy
This controls which types of events during object invocation are audited, and th
criteria controlling auditing of these events.

• Secure invocation policy
This specifies security policies associated with security associations and messa
protection. For example, it specifies:

• Whether mutual trust between client and target is needed (i.e., mutual
authentication if the communications path between them is not trusted).

• Quality of protection of messages (integrity and confidentiality).

There may be separate invocation policies for applications acting as client and tho
acting as target objects in this domain. This applies to access, audit, and secure
invocation policies. There may also be separate policies for different types of objec
the domain.

• Invocation delegation policy
This controls whether objects of the specified type in this domain, when acting
an intermediate in a chain, by default delegate the received credentials, use the
own credentials, or pass both.

• Application access policy
This policy type can be used by applications to control whether application
functions are permitted. Unlike invocation policies, it does not have to be mana
via the domain structure, but may be managed by the application itself.

• Application audit policy
This policy type can be used by applications to control which types of applicatio
events should be audited under what circumstances.

• Non-repudiation policy
Where non-repudiation is supported, a non-repudiation policy has the rules for
generation and verification of evidence.

• Construction policy
This controls whether a new domain is created when an object of a specific typ
created.
Security Service V1.5 Security Architecture May 2000 2-59



2

d for
y

e

ot

ence
atory

nced

s

ded.
hich
is

ship,

ype

(i.e.,

ay be
Domains at Object Creation

Any object that is accessible through an ORB must have an object reference create
it. This is often done as a part of the procedure for creating the object by a factor
object. When a new object reference is created in a secure environment, the ORB
implicitly associates the object reference, and hence the associated object, with th
following elements forming its environment.

• One or moreSecurity Policy Domains, defining all the policies to which the object
is subject.

• TheSecurity Technology Domains,characterizing the particular variants of security
mechanisms available in the ORB.

• ParticularSecurity Environment Domainswhere relevant.

The application code involved in the creation of an object, and its reference may n
need to be aware of security to protect the objects it creates, if the details are
encapsulated in a Factory object. Automatically making an object reference and h
the associated object a member of policy domains on creation ensures that mand
controls of enclosing domains are not bypassed.

The ORB will establish these associations when the creator of the object calls
PortableServer::POA::create reference or
PortableServer::POA::create_referece_with_id (see the Portable Object Adaptor
chapter of theCommon Object Request Broker: Architecture and Specification) or an
equivalent. Some or all of these associations may subsequently be explicitly refere
and modified by administrative or application activity, which might be specifically
security-related but could also occur as a side-effect of some other activity, such a
moving an object to another host machine.

In some cases, when a new object reference is created, a new domain is also nee
For example, in a banking system, there may be a domain for each bank branch, w
provides policies for bank accounts at that branch. Therefore when a bank branch
created, a new domain is needed. As for a newly created object’s domain member
if the application code creating the object and the object reference to it is to be
unaware of security, the domain manager must be created transparently to the
application. A construction policy specifies whether new objects reference of this t
in this domain require a new domain.

This construction policy is enforced at the same time as the domain membership
by POA::create_reference * or equivalent). For details, see the Portable Object
Adaptor chapter of theCommon Object Request Broker: Architecture and
Specification.

Other Domain and Policy Administration

Once an object reference has been created as a member of a policy domain, it m
moved to other domains using the appropriate domain management facilities (not
specified in this chapter).
2-60 Security Service V1.5 May 2000



2

urity

n to

ject
e of

n

ult

han

to
Once a domain manager has been created, new security policy objects can be
associated with it using the appropriate domain management facilities. These sec
policy objects are administered as defined in this specification.

The following diagram shows the operations needed by an administrative applicatio
manage security policies.

Figure 2-44 Managing Security Policies

Finding Domain Managers

An application can invoke theget_domain_managers operation on an object
reference to obtain a list of the immediately enclosing domain managers for that ob
(i.e., the object associated with the object reference). If these do not have the typ
policy required, a call can be made toget_domain_managers on one of these
domain managers to find its immediately enclosing domains.

Finding the Policies

Having found a domain manager, the administrative application can now find the
security policies associated with that domain by callingget_domain_policy on the
domain manager specifying the type of policy it wants (e.g., client secure invocatio
policy, application audit policy). This returns thePolicy object needed to administer
the policy associated with this domain. EachPolicy object supports the operations
required to administer that policy.

In this specification, no facilities are provided to specify the rules for combining
policies for overlapping domains, though some implementations may include defa
rules for this. (Definition of such rules is a potential candidate for future security
specifications. See Appendix F, “Facilities Not in This Specification.”)

If the policy that applies to the domain manager’s own interface is required (rather t
the one for the objects in the domain), thenget_policy (rather than
get_domain_policy ) is used.

Setting Security Policy Details

Having found the required security Policy object, the application uses its interface
set the policy.

Application
Object

Object
Reference

Domain
Manager

Policy
Object

get_domain_managers

get_domain_managers
get_domain_policy(policy type)

set_policy_option
Security Service V1.5 Security Architecture May 2000 2-61



2

y
t
it

nt

s

rity
tion
ces

and

e of

ain,
The operations available through the interface depend on the type of policy. For
example, the delegation policy only requires a delegation mode to be set to specif
delegation mode used when the object acts as an intermediate in a chain of objec
invocations, whereas an access policy will need to have an operation that makes
possible to specify who can access the objects.

Administrative interfaces are defined in Section 2.4, “Administrator’s Interfaces,” on
page 2-116, for the standard policy types, which all ORBs supporting security
functionality Level 2 support.

Different administration may be needed if standard policies are replaced by differe
policies. A supplier providing another policy may therefore have to specify its
administrative interfaces.

Specifying Use of Rights for Operation Access

The access policy is used to decide whether a user with specified privileges has
specifiedrights. A specific right may permit access to exactly one operation. More
often, the right permits access to a set of operations.

A RequiredRights object specifies which rights are required to use which operation
of an interface. The administrator canset_required_rights on this object.

2.2.5.3 The Model as Seen by the Objects Implementing Security

Security is provided for security-unaware applications by implementation level secu
objects, which are not directly accessible to applications. These same implementa
objects are also used to support the application-visible security objects and interfa
described in Section 2.2.5.1, “The Model as Seen by Applications,” on page 2-41
Section 2.2.5.2, “Administrative Model,” on page 2-58.

There are two places where security is provided for applications, which are unawar
security. These are:

1. On object invocation when invocation time policies are automatically enforced.

2. On object creation, when an object automatically becomes a member of a dom
and therefore subject to the domain’s policies.

Implementor’s View of Secure Invocations

Figure 2-45 on page 2-63 shows the implementation objects and services used to
support secure invocations.
2-62 Security Service V1.5 May 2000



2

ject
er

t
h the

n

urity
Figure 2-45 Securing Invocations

ORB Security Services

ORB Security Services are interposed in the path between the client and target ob
to handle the security of the object invocation. They may be interspersed with oth
ORB services, though where message protection is used, this will be the last ORB
service at the client side, as the request cannot be changed after this.

The ORB services use the policy objects to find which policies to apply to the clien
and target object, and hence the invocation. The ORB and ORB Services establis
binding between client and target object as defined in ORB Services, under
Section 2.2.2, “Structural Model,” on page 2-32. The ORB Security Services call o
the security services to provide the required security.

Security Policy

At the client, the security policies associated with it are accessed by the ORB Sec
Services using theCurrent::get_policy operation specifying the type of policy
required. At the client, the invocation policies that will be used for a specific

Client

request
request

ORB Core

Target
Object

target obj ref

Current

ORB Security
(and other)
Services

ORB Security
(and other)
Services

Current

Target
Policies

Client
Policies

Security
Services

Security
Services

Binding Binding
Security Service V1.5 Security Architecture May 2000 2-63



2

icy.
ses,

the

ce
olicy
invocation through a specific object reference can be inspected using theget_policy
operation on that object reference. At the target,Current::get_policy is used in a
similar way to obtain the policy associated with the target object.

Figure 2-46 get_policy Operation

Once the policy object has been obtained, the ORB Service uses it to enforce pol
The operations used to enforce the policy depend on the type of policy. In some ca
such as secure invocation or delegation, the ORB Service invokes aget_ operation of
the appropriatePolicy object (e.g.,
SecureInvocationPolicy::get_association_options ,
DelegationPolicy::get_delegation_mode ) specifying the particular policy options
required (e.g., whether confidentiality is required, and the delegation mode,
respectively). It then uses this information to enforce the policy, for example, pass
required policy options to theVault to enforce.

Decision objects corresponding to certain policy objects include rules, which enfor
the policy. For example, an access decision object corresponding to the access p
object has theaccess_allowed operation, which responds with a yes or no.

Specific ORB Security Services and Replaceable Security Services

The specific ORB Security Services and security services included in the CORBA
security object model are shown in Figure 2-47 on page 2-65.

ORB
Security
Service

Current
Policy
Object

get_policy(type of policy)

manipulate policy
2-64 Security Service V1.5 May 2000



2

s

ed
ects

et

ntrol
Figure 2-47 ORB Security Services

Two ORB Security Services are shown:

1. The access control service, which is responsible for checking if this operation i
permitted and enforcing the invocation audit policy for some event types.

2. The secure invocation service. On the client’s initial use of this object, it may ne
to establish a security association between client and target object. It also prot
the application requests and replies between client and target object.

The security services they use are discussed next.

Access Policy

An Access Decisionobject is used to determine if a given operation on a specific targ
object is permitted. It is obtained by the ORB service using theaccess_decision
attribute of theCurrent object. Since theAccess Decisionobjects arelocality
constrained, of necessity the access decision objects at the client and target are
distinct.

The ORB service invokes theaccess_allowed operation on theAccess Decision
object specifying the operation required, the principal credentials to be used for
deciding if this access is allowed, etc. This is independent of the type of access co
policy, which may be discretionary using ACLs or capabilities, mandatory labels
usage, etc.

Client

reply request

ORB Core

Target
Object

Access
Control

Secure
Invocation

Access
Control

Secure
Invocation

Client
Access
Decision

Vault

Security
Context

Target
Access
Decision

Vault

Security
Context

per request

to set up
security
association

per message
to protect
message

create create

replyrequest

ORB Security Services

Security Services
Security Service V1.5 Security Architecture May 2000 2-65



2

al

s

ture
s

ient
the

tions

n

.

The Access Decisionobject uses the access policy to decide what rights the princip
has by invoking theget_effective_rights operations on the appropriateAccess
Policy object.

If the access policies userights (rather than directly identifying that this operation is
permitted), theAccess Decisionobject now invokesget_required_rights on the
RequiredRights object to find what rights are needed for this operation. It compare
these rights with the effective rights granted by the policy objects, and if required
rights have been granted, it grants access. This model could be extended in the fu
to handle overlapping access policy domains as described in Appendix F, “Facilitie
Not in This Specification.”

Figure 2-48 Access Decision Object

Vault

TheVault object is responsible for establishing the security association between cl
and target. It is invoked by the Secure Invocation ORB Service at the client and at
target (usinginit_security_context andaccept_security_context ). TheVault
creates the security context objects, which are used for any further security opera
for this association.

Authentication of users (and some other principals) is done explicitly using the
authenticate operation described in Section 2.3.3, “Authentication of Principals,” o
page 2-73. Authentication of an intermediate object in a chain (or the principal
representing the object) may be done automatically by theVault when an intermediate
object invokes another object.

The Vault , like the security context objects it creates, is invisible to all applications

Security Context

For each security association, a pair ofSecurity Context objects (one associated with
the client, and one with the target) provide the security context information.
Establishing the security contexts may require several exchanges of messages
containing security information, for example, to handle mutual authentication or
negotiation of security mechanisms.

Access
Policy

Required
Rights

Access
Decision

get_required_rightsget_effective_rights

access_allowed
2-66 Security Service V1.5 May 2000



2

ials

ble.

nd

ient
r the
for

nd

rity
This

e of
Security Context objects maintain the state of the association, such as the credent
used, the target’s security name, and the session key. Theis_valid andrefresh
operations are supported to check the validity of the context and refresh it if possi

Security Context objects provide operations for protecting messages for integrity a
confidentiality such asprotect_message , reclaim_message .

They also have thereceived_credentials attribute, which is made available via the
Current object.

A security context can persist for many interactions and may be shared when a cl
invokes several target objects in the same trusted identity domain. Although neithe
client nor target is aware of an “association,” it is an important optimizing concept
the efficient provision of security services.

Relationship between Implementation Objects for Associations

There is not always a one-for-one relationship between client-target object pairs a
security contexts. For example, if a client uses different privileges for different
invocations on that object, this will result in separate security contexts. Also, a secu
context may be shared between this client’s calls on more than one target object.
is normally the case if the target objects share a security name, as shown in
Figure 2-49 on page 2-68. Note that theVault decides whether to use the same or a
different security context based on the target security name (which may be the nam
an object or trusted identity domain).
Security Service V1.5 Security Architecture May 2000 2-67



2

e

Figure 2-49 Target Objects Sharing Security Names

Implementor’s View of Secure Object Creation

When an object is created in a secure environment, it is associated with Security
Policy, Environment, and Technology domains as described in Section 2.2.5.2,
“Administrative Model,” on page 2-58.

The way it is associated with Environment and Technology domains is ORB
implementation-specific, and therefore not described here.

For policy domains, the construction policy of the application or factory creating th
object is used as shown in Figure 2-50 on page 2-69.

Current

Client Target
Object

T3

Target
Object

T2

Target
Object

T1

obj ref
for T1

obj ref
for T2

obj ref
for T3

Current Current

Security
context for

C-S1

Security
context for

C-T3

Security
context for

C-T3

Security
context for

C-S1

Object sharing
security name S1

T3 messages

T2 messages

T1 messages
2-68 Security Service V1.5 May 2000



2

B
f the
ct,
RB
es a

ded,
ct.

has

ted

he
ject
an
with

ains
ote:
Figure 2-50 Object Created by Application or Factory

The application (which may be a generic factory) object calls
POA::create_reference or equivalent to create the new object reference. The OR
obtains the construction policy associated with the object reference to be created. I
application that is attempting to create the object reference is itself a CORBA obje
then the ORB attempts to obtain the construction policy associated with it. If the O
is unable to obtain a construction policy for the object reference to be created, it us
default construction policy, which does not create a new domain.

The construction policy controls whether, in addition to creating the specified new
object reference, the ORB must also create a new domain. If a new domain is nee
the ORB creates both the requested object reference and a domain manager obje

If a new domain is not needed and the application is itself not an object and hence
no domain associated with it, the ORB uses a default domain to place the newly
created object reference. In all cases a reference to the domain manager associa
with the newly created object reference can be obtained by calling
get_domain_managers on the newly created object’s reference (See the ORB
Interface chapter of theCommon Object Request Broker: Architecture and
Specification).

If a new domain is created, the policies initially applicable to it are the policies of t
enclosing domain, or an ORB specific default set of policies in the case that the ob
reference was created in a situation where there is no enclosing domain (e.g., by
application that is itself not a CORBA object and hence has no domain associated
it).

The calling application, or an administrative application later, can change the dom
to which this object belongs, using the domain management operations. Please n
these operations do not form a part of this specification.

Application

ORB

application’s
own object
reference

construction
policy
object

BOA::create or equivalent

get_policy(construction policy)

use policy
Security Service V1.5 Security Architecture May 2000 2-69



2

are

ws

o

g

ese
ry
er,
ss is
2.2.5.4 Summary of Objects in the Model

The previous sections have described the various security-related objects, which
available to applications, administrators, and implementors.

Figure 2-51 shows the relationship between the main objects visible in different vie
for three types of security functionality.

1. Authentication of principals and security associations (which includes
authentication between clients and targets) and message protection.

2. Authorization and access control (i.e., the principal being authorized to have
privileges or capabilities and control of access to objects).

3. Accountability -- auditing of security-related events and using non-repudiation t
generate and check evidence of actions.

Figure 2-51 Relationship Between Main Objects

Credentials are visible to the application after authentication, for setting or obtainin
privileges and capabilities, for access control, and are available to ORB service
implementors. Only the first of these usages is shown.

Policy objects have management operations to allow policies to be maintained. Th
operations depend on the type of policy. For example, management of a mandato
access control policy using labels is different from management of an ACL. Howev
at run-time, an access decision object is used, which has a standard “check if acce

Domain Manager

administration
objects

implementation
ORB services

implementation
security objects

application
visible objects

authentication and
security association

authorization and
access control

accountability

Principal
Authenticator Current

Credentials

Secure Invocation

Vault Security
Context

Secure Invocation Policies

Delegation Policy

Access Policies

Access Decision

Access Control

Application
Access Decision

Invocation
Audit
Policy

Appl’n
Audit
Policy

Audit
Decision

Audit
Channel

Non-repudiation
Credentials

Audit
Decision

Audit
Channel
2-70 Security Service V1.5 May 2000



2

ject
time

30.

e not
vels

een
e

ts,

tion
ard
e

allowed” operation, whatever the access control policy used. The access policy ob
has the management operations, whereas the access decision object has the run
decision operations.

The diagram does not show:

• Application objects (client, target object, target object reference at the client).

• The ORB core (though the security ORB services it calls are shown).

• The construction policy object.

2.3 Application Developer’s Interfaces

2.3.1 Introduction

This section defines the security interfaces used by the application developer who
implements the business logic of the application. For an overview of how these
interfaces are used, see Section 2.2.1.3, “Application Developer View,” on page 2-

Please note that applications may be completely unaware of security, and therefor
need to use any of these interfaces. In general, applications may have different le
of security awareness. For example:

• Applications unaware of security, so that an application object, which has not b
designed with security in mind, can participate in a secure object system and b
subject to its controls such as:

• Protection default quality of protection on object invocations.

• Control of who can perform which operations on which objects.

• Auditing of object invocations.

• Applications performing security-relevant activities. An application may control
access and audit its functions and data at a finer granularity than at object
invocation.

• Applications wanting some control of the security of its requests on other objec
for example, the level of integrity protection of the request in transit.

• Applications that are more sophisticated in how they want to control their
distributed operations, for example, control whether their credentials can be
delegated.

• Applications using more specialist security facilities such as non-repudiation.

Security operations use the standard CORBA exceptions. For example, any invoca
that fails because the security infrastructure does not permit it, will raise the stand
CORBA::NO_PERMISSION exception. A security operation that fails because th
feature requested is not supported in this implementation will raise a
CORBA::NO_IMPLEMENT exception. Any parameter that has inappropriate
values should be flagged by raising theCORBA::BAD_PARAM exception. No
security-specific exceptions are specified.
Security Service V1.5 Application Developer’s Interfaces May 2000 2-71



2

e
ges

at
or
e

ies

ws:

ent
s
l

hile
able

for

of
al
2.3.1.1 Security Functionality Packages

Two security functionality packages and one optional security functionality packag
are defined in this specification. In addition, the Security Ready functionality packa
are also described in this and the two following sections.

Security Functionality Level 1 Package

Security functionality Package 1 provides an entry level of security functionality th
applies to all applications running under a secure ORB, whether aware of security
not. This includes security of invocations between client and target object, messag
protection, some delegation, access control, and audit.

The security functionality is in general specified by administering the security polic
for the objects, and is mainly transparent to applications.

Security Functionality Level 1 Package includes operations for applications as follo
Current::get_attributes allows an application to obtain the privileges and other
attributes of the principal on whose behalf it is operating. It can then use these to
control access to its own functions and data (see Section 2.3.4, “The Credentials
Object,” on page 2-78, and Section 2.3.10, “Access Control,” on page 2-103).

Security Functionality Level 2 Package

This security functionality level provides further security functionality such as more
delegation options.

It also allows an application aware of security to have more control of the enforcem
of this security. Most of the interfaces specified in this section are only available a
part of this functionality level. Note that although implementations must support al
Level 2 interfaces in order to conform to Security Functionality Level 2, different
implementations of these interfaces may support different semantic extensions, w
maintaining the same core semantics; some implementations will therefore be cap
of enforcing a wider variety of policies than others.

Optional Functionality Package

The only specified optional facility specified here is non-repudiation. The interfaces
this are specified in Section 2.3.12, “Non-repudiation,” on page 2-108.

It is possible to add other security policies to this specification, for example, extra
access or delegation policies, but these are not part of this specification.

2.3.1.2 Introduction to the Interfaces

The interfaces specified here, as in other sections, are designed to allow a choice
security policies and mechanisms. Where possible, they are based on internation
standard interfaces. Several of the operations in theCredentials interface are based on
those of GSS-API.
2-72 Security Service V1.5 May 2000



2

tion

ta

set of
es. In
.
rd
ndix

ule

r
ut

t

or
y be

ess
Data Types

Many of the security data types used by applications are also used for implementa
interfaces; therefore, these are defined in a separate module calledSecurity. See
Section B.2, “General Security Data Module,” on page B-1 for the details of the da
types used by the interfaces.

Some data types, such as security attributes and audit events, have an extensible
values, so the user can add values as required to meet user-specific security polici
these cases, a family is identified, and then a set of types or values for this family
Family identifiers 0-7 are reserved for OMG-defined families, and therefore standa
values. More details of these families and associated data types are given in Appe
B, Section B.11, “Values for Standard Data Types,” on page B-26.

In the interface specifications in the rest of this section, data types defined in mod
Security are included without the qualifyingSecurity:: for ease of readability. The full
definitions are included in Appendix B.

2.3.2 Finding Security Features

2.3.2.1 Description of Facilities

An application can find out what security facilities this implementation supports, fo
example, which security functionality level and options it supports. It can also find o
what security technology is used to provide this implementation.

TheCORBA::ORB::get_service_information operation is used to determine wha
security features are supported by this ORB (see the ORB Interface chapter of the
Common Object Request Broker: Architecture and Specification). To request
information about Security service theCORBA::ServiceType constant value,
CORBA::Security should be used. To see what the definition of various service
options relevant to security are see the constant definitions of type
CORBA::SecurityOptions in the IDL Security module in Appendix B, Section B.2,
“General Security Data Module,” on page B-1.

2.3.3 Authentication of Principals

2.3.3.1 Description of Facilities

A principal must establish its credentials before it can invoke an object securely. F
many clients, there are default credentials, created when the user logs on. This ma
performed prior to using any object system client. These default credentials are
automatically used on object invocation without the client having to take specific
action. Even if user authentication is executed within the object system, it should
normally be done by a user sponsor/login client, which is separate from the busin
application client, so that business applications can remain unaware of security.
Security Service V1.5 Application Developer’s Interfaces May 2000 2-73



2

ever,
cipal
e

ted

al

be

s

, the

e

ect
In most cases, principals must be authenticated to establish their credentials. How
some services accept requests from unauthenticated users. In this case, if the prin
has no credentials at the time the request is made, unauthenticated credentials ar
created automatically for it.

If the user (or other principal) requires authentication and has not been authentica
prior to calling the object system, the (login) client must invoke thePrincipal
Authenticator object to authenticate, and optionally select attributes for, the princip
for this session. This creates the requiredCredentials object and makes it available as
the default credentials for this client. Its object reference is also returned so it can
used for other operations on theCredentials. If the object system supports non-
repudiation, the credentials returned can be used for non-repudiation operations a
specified in Section 2.3.12, “Non-repudiation,” on page 2-108.

Authentication of principals may require more than one step, for example, when a
challenge/response or other multistep authentication method is used. In this case
authentication service will return information to the caller, which may be used in
further interactions with the user before continuing the authentication. So there ar
both authenticate andcontinue_authentication operations of thePrincipal
Authenticator object.

There is no need for an application to explicitly authenticate itself to act as an
initiating principal prior to invoking other objects, as this will be performed
automatically if needed. However, it does need to be performed explicitly if the obj
wants to specify particular attributes.

The Principal Authenticator object creates aCredentials object and places it on the
Current object’sown_credentials list only afterauthenticate or
continue_authentication returns a value of ‘SecAuthSuccess.’ The Principal
Authenticator always places new credentials at the beginning of theown_credentials
list. The application may removeCredentials objects from theown_credentials list
with the Current::remove_own_credentials operation.

The Principal Authenticator object is alocality constrained object.

2.3.3.2 The SecurityLevel2::PrincipalAuthenticator Interface

This section describes thePrincipalAuthenticator interface that has following
operations.

get_supported_authen_methods

This operation returns the authentication methods that are valid for a particular
mechanism that the Vault object supports. This operation raises a
CORBA::BAD_PARAM exception if the vault does not support the mechanism.
2-74 Security Service V1.5 May 2000



2

for

e
tem.

s

d

AuthenticationMethodList get_supported_authen_methods(
in MechanismType mechanism

);

Parameters

Return Value

The list of authentication methods supported by this PrincipalAuthenticator object
the particular mechanism.

authenticate

This operation is called to authenticate the principal and optionally request privileg
attributes that the principal requires during its capsule specific session with the sys
It creates a capsule specificCredentials object including the required attributes and is
placed on theCurrent object’sown_credentials list according to the credential’s
mechanism type.

AuthenticationStatus authenticate(
in AuthenticationMethod method,
in MechanismType mechanism;
in SecurityName security_name,
in Opaque auth_data,
in AttributeList privileges,
out Credentials creds,
out Opaque continuation_data,
out Opaque auth_specific_data

);

Parameters

mechanism Contains the mechanism for which the authentication method
are valid.

method The identifier of the authentication method used

mechanism The security mechanism with which to create the
Credentials.

security_name The principal’s identification information (e.g., login name).

auth_data The principal’s authentication information such as passwor
or long term key.

privileges The privilege attributes requested.
Security Service V1.5 Application Developer’s Interfaces May 2000 2-75



2

that
Return Value

The return parameter is used to specify the result of the operation.

continue_authentication

This operation continues the authentication process for authentication procedures
cannot complete in a single operation. An example of this continuation is a
challenge/response type of authentication procedure.

AuthenticationStatus continue_authentication(
in Opaque response_data,
in Credentials creds,
out Opaque continuation_data,
out Opaque auth_specific_data

);

creds This parameter contains thelocality constrained object
reference of the newly createdCredentials object. It is
usable and placed on theCurrent object’sown_credentials
list only if the return value is ‘SecAuthSuccess.’

auth_specific_data Information specific to the particular authentication service
used

continuation_data If the return parameter from the authenticate operation is
‘SecAuthContinue,’ then this parameter contains challenge
information for authentication continuation.

‘SecAuthSuccess’ Indicates that the object reference of the newly created
initialized credentials object is available in thecreds
parameter.

‘SecAuthFailure’ Indicates that authentication was in some way inconsistent
or erroneous, and therefore credentials have not been
created.

‘SecAuthContinue’ Indicates that the authentication procedure uses a
challenge/response mechanism. Thecredscontains the
object reference of a partially initializedCredentials
object. Thecontinuation_data indicates details of the
challenge.

‘SecAuthExpired’ Indicates that the authentication data contained some
information, the validity of which had expired (e.g., expired
password).Credentials have therefore not been created.
2-76 Security Service V1.5 May 2000



2

isms,
lso

ed
ones

rior
in
Parameters

Return Value

The return parameter is used to specify the result of the operation.

2.3.3.3 Portability Implications

The authenticate andcontinue_authentication operations allow different
authentication methods to be used. However, methods available are dependent on
availability of underlying authentication mechanisms. This specification does not
dictate that particular mechanisms should be used. However, use of some mechan
(e.g., those involving hardware such as smart cards or finger print readers) may a
require use of device-specific objects so the client using such objects will not be
portable to systems which do not support such devices. It is therefore recommend
that use of both the authenticate operations described here and any device-specific
be confined to a user sponsor or login client, or that such authentication is done p
to calling the object system, where the credentials resulting from this can be used
portable applications.

response_data The response data to the challenge.

creds Reference of the partially initialized Credentials object. The
Credentials object is fully initialized only when return
parameter is ‘SecAuthSuccess.’

continuation_data If the return parameter from the continue_authentication
operation is ‘SecAuthContinue,’ then this parameter
contains challenge information for authentication
continuation.

auth_specific_data Information specific to the particular authentication service
used.

‘SecAuthSuccess’ Indicates that theCredentials object whose reference was
identified by thecredsparameter is now fully initialized.

‘SecAuthFailure’ Indicates that the response data was in some way
inconsistent or erroneous, and that therefore credentials
have not been created.

‘SecAuthContinue’ Indicates that the authentication procedure requires a
further challenge/response. TheCredentials object whose
reference was identified in thecredsparameter is still only
partially initialized. Thecontinuation_data indicates
details of the next challenge.

‘SecAuthExpired’ Indicates that the authentication data contained some
information whose validity had expired (e.g., expired
password). TheCredentials object referred to by thecreds
parameter is not valid.
Security Service V1.5 Application Developer’s Interfaces May 2000 2-77



2

fic

red
not

tials

a

h

in

,

e

2.3.4 The Credentials Object

2.3.4.1 Description of Facilities

A Credentials object represents a particular principal’s credential information speci
to the capsule. It includes information such as that principal’s privilege and identity
attributes, such as an audit id. (It also includes some security-sensitive data requi
when this principal is involved in peer entity authentication. However, such data is
visible to applications.)

TheCredentials object is alocality constrained object.

An application may want to:

• Specify security invocation options to be used by default whenever these creden
are used for object invocations.

• Modify the privilege and other attributes in the credentials, for example, specify
new role or a capability. This can modify the current privileges in use, or the
application can make a copy of theCredentials object first, and then modify the
new copy.

• Inquire about the security attributes currently in the credentials, particularly the
privilege attributes.

• Check if the credentials are still valid or if they have timed out, and if so, refres
them.

Credentials objects are created as the result of:

• Authentication (see “Authentication of Principals” on page 2-73).

• Copying an existingCredentials object.

• Asking for aCredentials object viaCurrent (see Section 2.3.7, “Security
Operations on Current,” on page 2-93).

The way these credentials are made available for use in invocations is described
Section 2.2, “Security Architecture,” on page 2-28, and defined in detail in
Section 2.3.6, “Operations on Object Reference,” on page 2-85, and Section 2.3.7
“Security Operations on Current,” on page 2-93.

Credentials used for non-repudiation also support further facilities as described in
Section 2.3.12, “Non-repudiation,” on page 2-108.

2.3.4.2 The SecurityLevel2::Credentials Interface

The following operations are in theCredentials interface.

copy

This operation creates a newCredentials object, which is an exact duplicate (a “deep
copy”) of theCredentials object which is the target of the invocation. The return valu
is a reference to the newly created copy of the originalCredentials object.
2-78 Security Service V1.5 May 2000



2

all.

a
of

is

he

the

uch
Credentials copy();

Parameters

None

Return Value

An object reference to a copy of the Credentials object, which was the target of the c

destroy

This operation destroys theCredentials object that it is invoked on. In general, the
caller is always responsible for destroying its copy of theCredentials object after it is
done with it. WhenCredentials are used as“in” parameters the callee always makes
copy if needed. Then onwards the callee is responsible for managing the life-style
the copy that it makes. In case ofCredentials objects that are returned as result, the
caller is responsible for destroying it. In case of“out” parameters, the callee is
responsible for creating it and the caller is responsible for destroying it. The caller
responsible for providing thread safety forCredentials parameters that are passed as
“in” parameters. They must ensure that no other thread modifies the object until t
invoked operation is completed.

void destroy();

Parameters

None

Results

None. The Credentials object is destroyed.

set_privileges

This is used to request a set of privilege attributes (such as role, groups), updating
state of the suppliedCredentials object. One of the attributes requested may be an
attribute set reference, which causes a set of attributes to be requested.

Note –This operation can only be used to set privilege attributes. Other attributes, s
as the audit identity, are generated by the system and cannot be changed by the
application.

boolean set_privileges(
in boolean force_commit,
in AttributeList requested_privileges,
out AttributeList actual_privileges

);
Security Service V1.5 Application Developer’s Interfaces May 2000 2-79



2

. If
has

pal

e

s)
Parameters

Return Value

get_attributes

This is used to get privilege and other attributes from theCredentials. It can be used to:

• Get privilege attributes, including capabilities, for use in access control decisions
the principal was not authenticated, only one privilege attribute is returned. This
type Public and no meaningful value.

• Get other attributes such as audit or charging identities if available. (If the princi
is not authenticated, none of these are returned.)

AttributeList get_attributes(
in AttributeTypeList attributes

);

Parameters

Return Value

The requested set of attributes reflecting the state of theCredentials.

is_valid

Credentials objects may have limited lifetimes. This operation is used to check if th
Credentials are still valid.

force_commit If true, the attributes should be applied immediately;
otherwise, attribute acquisition may be deferred to when
required by the system

requested_privileges A set of (typed) privilege attribute values. One of these
may be a role name, which is an attribute set reference
used to select a set of attributes. (A null attribute set
requests default attributes.) Attributes can include
capabilities

actual_privileges The set of (typed) privileges actually obtained

TRUE Indicates that attributes can be set, and that the
actual_privilegesparameter contains the complete set or
subset of those attributes requested. It is the responsibility
of the application programmer to interrogate the returned
attributes to determine their suitability.

FALSE Operation failed,Credentials were not modified

attributes The set of security attributes (privilege attributes and identitie
whose values are desired. If this list is empty, all attributes are
returned.
2-80 Security Service V1.5 May 2000



2

rity

.e.
.

boolean is_valid(
out UtcT expiry_time

);

Parameters

Return Value

refresh

This operation allows the application to updateCredentials. Depending on the
mechanism, someCredentials may need to be refreshed before they expire; may be
able to be refreshed after they expire; or may not be able to be refreshed. If
Credentials cannot be refreshed due to the limitations of the implementation a
CORBA::NO_IMPLEMENT exception is raised. If theCredentials object cannot
be refreshed due to the limitations of the security mechanism a
CORBA::BAD_OPERATION exception is raised. If theCredentials object cannot
be refreshed due to invalidrefresh_data (i.e. stipulating a new expiry time beyond a
legal limit) a CORBA::BAD_PARAM exception is raised.

boolean refresh(
in   Opaque   refresh_data

);

Parameters

get_security_feature

This operation returns a boolean value that represents the value of the given secu
feature for the given communication direction that theCredentials object is
supporting.

The communication direction parameter indicates which set of security features (i
those set for the request direction, the reply direction, or both) should be returned
Conforming implementations are not required to support the “request” and “reply”
directions. If an unsupported direction is passed toget_security_feature , the
CORBA::BAD_PARAM exception is raised.

The get_security_feature operation has the following definition:

expiry_time The time that theCredentials expire.

TRUE TheCredentials is still valid

FALSE TheCredentials is not valid anymore

refresh_data Data needed to refreshCredentials, which is specific to the
mechanism type.
Security Service V1.5 Application Developer’s Interfaces May 2000 2-81



2

tion
boolean get_security_feature(
    in CommuncationDirection direction,
    in SecurityFeature feature
);

Parameters

Return Value

The boolean value of the security feature supported by theCredentials object.

credentials_type

This readonly attribute specifies whether theCredentials object is of the “own”
credentials type (i.e., created by thePrincipalAuthenticator ) or it is of the “received”
credentials type (i.e., established as the result of a thread specific secure associa
with a client in the context of servicing a request). It has the following definition:

readonly attribute Security::InvocationCredentialsType credentials_type;

authentication_state

This readonly attribute specifies the authentication state theCredentials object. For
Credentials that are created by thePrincipalAuthenticator , this attribute tells
whether theCredentials are partially initialized. It has the following definition:

readonly attribute Security::AuthenticationStatus authentication_state;

Values

mechanism

This readonly attribute specifies the mechanism theCredentials object represents. It
has the following definition:

direction The communication direction (i.e. both, request, or reply) to
which the security feature is applicable. Normally set to both.

feature The feature for which the value is sought.

’SecAuthSuccess’ Credentials are fully initialized.Credentials may be valid.

’SecAuthFailure’ Authentication has failed.Credentials are invalid.Credentials
may be in this state if they were partially initialized in a call to
PrincipalAuthenticator::authenticate and then failed in the
PrincipalAuthenticator::continue_authentication
operation.

’SecAuthContinue’ Credentialsare partially initialized.Credentials that are not yet
valid for use.

’SecAuthExpired’ Credentials initialization has expired. Credentials are invalid.
2-82 Security Service V1.5 May 2000



2

s

m.

by

s the

ism
readonly attribute MechanismType mechanism;

accepting_options_supported and accepting_options_required

These two attributes are the options that theCredentials object support and require to
accept secure associations from clients. These two attributes can be thought of a
directly relating to thetarget_supports and target_requires association options
attributes that may be advertised in a security mechanism component in a target
object’s IOR. Section 3.1.4.1, “Security Components of the IOR,” on page 3-8

Note – Not all mechanisms may use such a security component in IOR.

When theCredentials are created by thePrincipalAuthenticator these options will be
set to default values depending on initialization scheme of the particular mechanis
Authentication data may contain constraints on the supported/required association
options as well as constraints on the mechanism itself.

Setting these attributes to values that are invalid for the mechanism raises a
CORBA::BAD_PARAM exception. In general, theaccepting_options_required
cannot be set to have “more” capability than theaccepting_options_supportedand
the accepting_options_supported cannot be set to have “less” capability than the
accepting_options_required .

These attributes have the following definition:

attribute AssociationOptions accepting_options_supported;
attribute AssociationOptions accepting_options_required;

invocation_options_supported and invocation_options_required

This attribute is used to control the security characteristics of the secure association
which theseCredentials are used to make an invocation on a target object. These
association options affect the characteristics of a secure association setup, such a
delegation mode to use, whether trust in the target is needed, and the message
protection is required.

Setting this attribute to an invalid value, which may be constrained by the mechan
or the internal state of theCredentials, will raise aCORBA::BAD_PARAM
exception.

This attribute has the following definition:
Security Service V1.5 Application Developer’s Interfaces May 2000 2-83



2

in an

,
n
ode

a
ved

the
al.
attribute AssociationOptions invocation_options_supported;
attribute AssociationOptions invocation_options_required;

2.3.5 The ReceivedCredentials Object

2.3.5.1 Description of Facilities

A ReceivedCredentialsobject represents a remote principal’s credential information
for a secure association and therefore includes much of the same information as
“own” type Credentials object, such as the principal’s privilege attributes and
identities.ReceivedCredentialsmay also be used for invocations (delegation).
Therefore, theReceivedCredentialsinterface inherits from theCredentials interface.

A ReceivedCredentialsobject represents the secure association to the application.
Therefore, theReceivedCredentialsobject contains the properties of that association
such as theCredentials local to the capsule used for the association, the associatio
options in effect, the delegation state of the remote principal, and the delegation m
of the ReceivedCredentials.

A ReceivedCredentialsobject, since it represents a secure association, may have
lifetime associated with a single thread of execution servicing a request. It is retrie
from the securityCurrent object through thereceived_credentials attribute.

ReceivedCredentialsobject is alocality constrained object, and it contains a
credentials_type value ofSecReceivedCredentials.

2.3.5.2 The SecurityLevel2::ReceivedCredentials Interface

The ReceivedCredentials interface is defined as follows:

interface ReceivedCredentials : Credentials { // Locality Constrained
readonly attribute Credentials accepting_credentials;
readonly attribute AssociationOptions association_options_used;
readonly attribute DelegationState delegation_state;
readonly attribute DelegationMode delegation_mode;

};

accepting_credentials

This readonly attribute contains the reference to the credentials that are used on
accepting side of the negotiation of the secure association with the remote princip

association_options_used

This readonly attribute contains the association options in effect for the secure
association with the remote principal.
2-84 Security Service V1.5 May 2000



2

s a

rted

cts

cified
delegation_state

This readonly attribute tells the delegation state of the remote principal for these
credentials. It has the following values:

Values

Note –Not all security mechanisms may be able to indicate if the remote principal i
delegate. For example, with unrestricted delegation, sometimes known as
impersonation, the value of this attribute would always beSecInitiator.

delegation_mode

This readonly attribute indicates the delegation mode of the credentials. It has the
following values.

Values

2.3.5.3 Portability Implications

The PrincipalAuthenticator::authenticate andCredentials::set_privileges
operations allow particular privilege attributes to be specified. The attributes suppo
by different systems may vary according to security policies supported. It is
recommended that use of these interfaces be limited, so business application obje
are not exposed to particular policy details (unless they need to be, as they are
enforcing compatible security policies directly).

2.3.6 Operations on Object Reference

2.3.6.1 Description of Facilities

If the client application is unaware of security (for example, was written to use an
ORB without security), the ORB services will enforce the relevant security policies
transparently to applications. As described elsewhere, the security enforced is spe
by:

’SecInitiator’ The remote principal is the acting in his own behalf.

’SecDelegate’ The remote principal is acting in behalf of another principal

‘SecDelModeNoDelegation’ The credentials cannot be used to make
invocations.

‘SecDelModeSimpleDelegation’ The credentials can be used to make
invocations with no traced capability.

‘SecDelModeCompositeDelegation’ The credentials can be used to make
invocations with some composite delegation
scheme.
Security Service V1.5 Application Developer’s Interfaces May 2000 2-85



2

is

one

it
ns
ing

nt

n

ct of
ts.
de
tion

s
t of

n

t

ful
• The security policy set at the client by administrative action.

• The credentials used by the client.

• The security policy for the target object. Relevant security information about this
made available to the client in the target’s object reference.

These policies include association options, any controls on whether this client can
perform this operation on this target, and the quality of protection of messages.

The only visibility of security to most applications is that some operations will now
fail because they would breach security controls.

An application client unaware of security can communicate with a security aware
and vice versa.

A client application aware of security can also specify what security policy options
wants to apply when communicating with this target object by performing operatio
on the target object’s reference and the binding object associated with it. The follow
operations are available on the target object reference.

• get_policy is used to find the policy of the specified type (including those releva
to security) for this object.

• get_domain_managers is used to obtain a list of domain managers that the give
object is associated with.

• set_policy_overrides is used to set overrides of default policies on individual
object references.

Although these operations are on the target object reference, the scope of the effe
the operation is the use of that reference itself, and not the object that it represen
That is, the act of obtaining a copy of an object reference with a new set of overri
policies set on it in no way affects the target object that the object reference in ques
is associated with.

A target object can influence the security policy for incoming invocations by setting
security policies using the administrative operations in Section 2.4, “Administrator’
Interfaces,” on page 2-116. This will affect the security information exported as par
its object reference.

The default policies that can be overridden using theset_policy_overrides operation
are:

• QOP - the quality of protection that will be provided to any successful invocatio
using that object reference. TheQOPPolicy object is the bearer of this policy.

• Invocation Credentials - the Credentials that will be used in invocations using tha
object reference. TheInvocationCredentialsPolicyobject is the bearer of this
policy.

• Security Mechanisms- the mechanisms (one of) which must be used for success
invocation using the object reference. TheMechanismsPolicyobject is the bearer
of this policy.
2-86 Security Service V1.5 May 2000



2

d

nes
t
the

the
• Establish Trust - the directive for the establishment of trust of client by target an
target by client. TheEstablishTrustPolicy object is the bearer of this policy.

• Delegation Directive- the directive telling whether delegation should be used
during the invocation. TheDelegationDirectivePolicyobject is the bearer of this
policy.

The above policy objects can be created using theORB::create_policy operation.
The above policy objects must be put in aPolicyList and given to the
set_policy_overrides operation on the target object reference. If successful, the
operation returns a new object reference that uses the new policy overrides for
subsequent invocations.

The policies currently associated with the object reference, including overridden o
can be accessed using theget_policy operation. This operation returns a Policy objec
of the appropriate type containing the current policy, which can be extracted from
readonly attribute in the Policy object interface.

Note – The application states itsminimum security requirements. A higher level of
security may still be enforced as this may be required by security policy. Thus
operationally the default policies will actually be overridden only if the requested
overrides are consistent with the overall security policy.

2.3.6.2 Client Side Invocation Policy Objects

There are a number of Policy objects that are bearers of the client side invocation
related policies. They are as follows:

QOP Policy

The QOP Policy object has a policy type ofSecurity::SecQOPPolicy and has the
QOPPolicy interface, which is shown below.

interface QOPPolicy : CORBA::Policy { // Locality Constrained
readonly attribute Security::QOP qop;

};

This interface has a single readonly attributeqop which represents the policy in the
form of an enum value of typeSecurity::QOP.

This object can be passed toset_policy_overrides to specify that a particular quality
of protection is required for messages sent using the object reference returned by
set_policy_overrides operation. When this object is returned by theget_policy
operation it contains the quality of protection policy associated with this object
reference.

Mechanism Policy

The Mechanism Policy object has a policy type ofSecurity::SecMechanismPolicy
and has theMechanismPolicy interface, which is shown below.
Security Service V1.5 Application Developer’s Interfaces May 2000 2-87



2

the

ce.

ject

st in

ted
interface MechanismPolicy : CORBA::Policy {// Locality Constrained
readonly attribute Security::MechanismTypeList mechanisms;

};

This interface has a single readonly attributemechanisms, which represents the policy
in the form of aSecurity::MechanismTypeList .

This object can be passed toset_policy_overrides to request the use of one of a
specific set of mechanisms in invocation through the object reference returned by
set_policy_overrides operation. When this object is returned byget_policy it
contains the security association mechanisms available through this object referen

Invocation Credentials Policy

The Invocation Credentials Policy object has a policy type of
Security::SecInvocationCredentialsPolicy and has the
InvocationCredentialsPolicy interface, which is shown below.

interface InvocationCredentialsPolicy : CORBA::Policy { // Locality Constrained
readonly attribute CredentialsList creds;

};

This interface has a single readonly attributecredswhich returns a list ofCredentials
objects which will be used as invocation credentials for invocations through this ob
reference.

This object can be passed toset_policy_overrides to specify one or more
Credentials objects to be used when calling this target object using the object
reference returned byset_policy_overrides . For example, the client may want to
make different privileges available to different targets by choosingCredentials with
the required privileges. When this object is returned byget_policy it contains the
active credentials that will be used for invocations via this target object reference.

Establish Trust Policy

The Establish Trust Policy object has a policy type of
Security::EstablishTrustPolicy and has theEstablishTrustPolicy interface,
which is shown below.

interface EstablishTrustPolicy : CORBA::Policy { // Locality Constrained
 readonly attribute EstablishTrust trust;

};

This interface has two readonly attributes.

trust

This attribute is a structure that contains two attributes each stipulating whether tru
client and trust in target is enabled.

• The trust_in_client element of this attribute stipulates whether the invocation
must select credentials and mechanism that will allow the client to be authentica
to the target. (Some mechanisms may not support client authentication).
2-88 Security Service V1.5 May 2000



2

by
ct

e
s a

de
ible

The

e

• The trust_in_target element of this attribute stipulates whether the invocation
must first establish trust in the target.

This object can be passed toset_policy_overrides to specify that a particular trust
policy be followed for invocations using this object reference. When this object is
returned by theget_policy operation it contains the trust policy associated with this
object reference.

Delegation Directive Policy

The Delegation Directive Policy object has a policy type of
Security::DelegationDirective and has theDelegationDirectivePolicy interface,
which is shown below.

interface DelegationDirectivePolicy : CORBA::Policy { // Locality Constrained
readonly attribute Security::DelegationDirective    delegation_directive;

};

This interface has a single readonly attributedelegation_directive that represents the
policy stating whether delegation should be used when making invocations on an
object. If the policy states that delegation should be used, then theCredentials object
selected for the invocation must support delegation.

This object can be passed toset_policy_overrides to specify that a delegation policy
be followed for invocations using this object reference. When this object is returned
the get_policy operation it contains the delegation policy associated with this obje
reference.

2.3.6.3 Semantics of Combined Client Policies

The client side policies that are defined for a particular object reference employ a
particular semantics in determining the security characteristics of invocations mad
with that object reference. When applied to an object reference, the ORB perform
decision procedure to determine the security characteristics that are compatible
between the security mechanisms that the target object supports and the client si
security policies that are attached to the target object’s reference. It is entirely poss
that the set of policies when applied to the object reference may be inconsistent.
basic thrust of this decision procedure is to select the properCredentials object from
the list of credentials supplied in theInvocationCredentialsPolicy object.

The following decision procedure is applied by the security service to eliminate th
Credentials made available for invocation by list ofCredentials objects in the
InvocationCredentialsPolicy . The decision procedure is used amongst this list of
Credentials objects, the other client side security policies, and the target objects’s
IOR. This decision procedure determines the security mechanism, a compatible
Credentials object, and a security component from the target’s IOR to use for the
invocations made on that object reference. It should be noted thatCredentials are
selected from sequence ofCredentials returned by thecreds attribute selector of the
InvocationCredentialsPolicy object. These credentials are examined first by their
mechanism by virtue of theMechanismPolicy object, then by the Credentials being
able to support other policies that may apply.
Security Service V1.5 Application Developer’s Interfaces May 2000 2-89



2

y

ure

and

nd

e.
It is the goal of the decision procedure to select a singleCredentials object with which
to make the invocation. However, it is entirely possible that constraints provided b
other client polices, (such as theMechanismPolicy ) and the target object’s IOR
eliminate allCredentials objects from the list, thereby raising a
CORBA::NO_RESOURCES exception. Also, it is possible that the elimination
procedure leaves more than oneCredentials object. In this case, any of the Credentials
objects are viable for making the invocation. However, a selection of a single
Credentials object still needs to be made. At this point, it is left up to the ORB to
select a Credentials object from a list of remaining available credentials.

The elimination decision procedure is as follows:

For each mechanism type in theMechanismPolicy {

Select a matching security component in the target’s IOR by the mechanism
type.
If a matching component is found {

Find aCredentials object in the credentials list that supports the
mechanism.

If a Credentials object is found and it supports
the QOP Policy,
the Delegation Directive Policy,
and the Establish Trust Policy {

If the association options implied by all policies are supported
by the selected security component in the IOR and all the
required association options of security component are satisfied {

Use the selected Credentials and selected attributes to set up the sec
association.

} else {
Find the next credentials object that supports the selected mechanism
continue.

}
} else {

Find the next credentials object that supports the selected mechanism a
continue.

}
} else {

Get the next mechanism type from theMechanismPolicyand continue.
}

}
If no mechanism can be found {

A CORBA::NO_RESOURCES exception is raised with an informative messag
}

}

2-90 Security Service V1.5 May 2000



2

ct.

e

2.3.6.4 Security Relevant Operations in the CORBA::Object Interface

These operations are defined in detail in the ORB Interface chapter of theCommon
Object Request Broker: Architecture and Specification. A brief description is included
here to help users of the Security Services.

get_policy

This gets the security policy object of the specified type, which applies to this obje
This operation is also available onCurrent and is generally used there to get the
policies for the current object.

Theget_policy operation is used on object references during administration. For
example, it may be used to get the policy for a domain.

CORBA::Policy get_policy(
in CORBA::PolicyType policy_type

);

Parameters

Return Value

Exceptions

get_domain_managers

get_domain_managers allows administration services (and applications) to retriev
the domain managers, and hence the security and other policies applicable to
individual objects that are members of the domain.

DomainManagersList get_domain_managers ();

Parameters

None.

policy_type The type of policy to be obtained.

policy A policy object of the type specified by the policy_type
parameter.

CORBA::BAD_PARAM Raised when the value of policy type is not valid
either because the specified type is not supported by
this ORB or because a policy object of that type is
not associated with this Object.
Security Service V1.5 Application Developer’s Interfaces May 2000 2-91



2

one
iated

xist
a

t

ocal

ence

ates
ject
with
nce

e

Return Value

A list of immediately enclosing domain managers of this domain manager. At least
domain manager is always returned in the list since by default each object is assoc
with at least one domain manager at creation.

set_policy_overrides

set_policy_overrides makes it possible to override a subset of the policies that
apply to a specific object reference. It takes two input parameters.

• The first parameterpolicies is a sequence of references toPolicy objects.

• The second parameterset_add of type CORBA::SetOverrideType indicates
whether these policies should be added onto any other overrides that already e
(CORBA::ADD_OVERRIDE ) in the object reference, or they should be added to
clean override free object reference (CORBA::SET_OVERRIDE ). This operation
associates the policies passed in the first parameter with a newly created objec
reference that it returns.

The association of these overridden policies with the object reference is a purely l
phenomenon. These associations are never passed on in any IOR or any other
marshaled form of the object reference. The associations last until the object refer
is destroyed or the process/capsule/ORB instance in which it exists is destroyed.

The policies thus overridden in this new object reference and all subsequent duplic
of this new object reference apply to all invocations that are done through these ob
references. The overridden policies apply even when the default policy associated
current is changed. It is always possible that the effective policy on an object refere
at any given time will fail to be successfully applied, in which case the invocation
attempt will fail and return aCORBA::NO_PERMISSION exception.

enum SetOverrideType {SET_OVERRIDE, ADD_OVERRIDE};

Object set_policy_overrides(
in PolicyList policies,
in SetOverrideType set_add

);

Parameters

Return Value

A copy of the object reference with the overrides frompolicies associated with it in
accordance with the value ofset_add .

policies A sequence of Policy objects that are to be associated with th
new copy of the object reference returned by this operation.

set_add Whether the association is in addition to (ADD_OVERRIDE)
or as replacement of (SET_OVERRIDE) any existing overrides
already associated with the object reference.
2-92 Security Service V1.5 May 2000



2

any
curity

y
ry

e

e
cific

t is

ich
e

s in

ss
2.3.6.5 Portability Implications

The security features that can be set are generally ones supported by a variety of
security mechanisms. Applications using them will therefore be portable between
systems where the security mechanisms support these features. However, some se
mechanisms will not support all features, for example, they may not provide repla
protection, or may not support confidentiality of application data (owing to regulato
controls). Applications should check the response when attempting to set security
features, and if a requested feature is not available, take suitable action.

2.3.7 Security Operations on Current

2.3.7.1 Description

The Current object represents service specific state information associated with th
current execution context (see the ORB Interface chapter of theCommon Object
Request Broker: Architecture and Specification); both clients and targets haveCurrent
objects representing state associated with the thread of execution and the
process/capsule in which the thread is executing (their execution contexts).

The operations of theCurrent object is intended to return information pertaining to th
state associated with the current execution context. This includes information spe
to both the thread of execution that is used to invoke the operation, as well as the
process or capsule to which the thread belongs. State changes affecting state tha
associated purely with the thread and not with any broader execution context like
capsule (i.e., thread specific) is lost, once the operation within the execution of wh
this was done completes its execution, thus returning the thread to the ORB. Stat
changes to state associated with a broader execution context like a capsule (i.e.,
capsule specific) on the other hand persists across multiple invocation of operation
the target object, until it is further modified through operations of theCurrent object
or by other means.

The SecurityLevel1::Current and theSecurityLevel2::Current interfaces
described in this section contains operations of both types. In this section, each
operation is identified to be either thread specific or process specific to distinguish
their behavior.

Note that a reference to theCurrent object representing the active execution context
can be retrieved using theORB::resolve_initial_references(“SecurityCurrent”)
operation (see the ORB Interface chapter of theCommon Object Request Broker:
Architecture and Specification). In a secure ORB, theCurrent object includes
operations relevant to Security. TheCORBA::Current object returned by the
resolve_initial_references operation can be narrowed to
SecurityLevel1::Current or SecurityLevel2::Current as desired.

The operations on theCurrent object are described in this section and provide acce
to information about one or more of the following credentials:
Security Service V1.5 Application Developer’s Interfaces May 2000 2-93



2

es
for

d
to

y

s

thus

to an

by
• own credentials: the list of credentials associated with the active application
(capsule). A capsule’s own credentials are normally set up as the result of the
application being initialized or explicitly by calling on the
PrincipalAuthenticator object.

• received credentials: the credentials received from the client of the invocation as
seen at the target object.

The operations provided are the following:

• get_attributes (thread specific) obtain privilege and other attributes associated
with received credentials (which should be the user’s privileges when at the
workstation).

• set_credentials (thread specific) can specify the type of credentials. This chang
the credentials to be used in the future for invocation, as its own credentials, or
non-repudiation. TheseCredentials apply only to those object reference in which
the invocations credentials have not been overridden.

• get_credentials (thread specific) can obtain the credentials currently associate
with theCurrent object for invocation, non-repudiation. These credentials apply
those object references in which the invocation credentials have not been
overridden.

The application can also use the following:

• get_policy (capsule specific) operation to find what security policies apply to it.

• own_credentials (capsule specific) attribute containing the credentials owned b
the application.

• received_credentials (thread specific) attribute containing the credentials
received from the client by the application.

• required_rights_object (capsule specific) attribute to discover which operation
require which rights.

• principal_authenticator (capsule specific) attribute to get a reference to the
PrincipalAuthenticator object (which can be used to authenticate principals and
obtainCredentials objects for them).

• access_decision (capsule specific) attribute to get a reference to theAccess
Decisionobject.

• audit_decision (capsule specific) attribute to get a reference to theAudit Decision
object.

• get_security_mechanisms returns the security mechanism data for the target.

It should be noted that when an application starts its execution and gains access
ORB using theORB_init operation, it immediately gets a set of default policies and
credentials associated with it. Each thread executing in that capsule inherits these
defaults and continues to be guided by them until any of the defaults are replaced
the use of aset_* operation in the thread. Subsequently the new credentials and
features set using theset_* operation remain active until they are modified again by
2-94 Security Service V1.5 May 2000



2

re

es,
ct

rom

to

)

further use ofset_* operations or the thread terminates or leaves the capsule. The
correspondingget_* operations return the currently active credentials, policies, featu
and attributes associated with the thread.

It should further be noted that if the policies associated with any individual object
reference has been overridden using theObject::set_policy_overrides operation,
then the overridden policies take precedence over the corresponding thread polici
when the said thread is used to carry out an object invocation using the said obje
reference.

2.3.7.2 The SecurityLevel1::Current Interface

The following operations are available in theSecurityLevel1::Current interface.

get_attributes

This is thread specific operation that is used to get privilege (and other) attributes f
the client’s credentials. It is available in the security functionality Level 1 to allow
applications to enforce their own security policies without these applications having
perform operations on credentials.

This operation can be used to get:

• Privilege attributes for use in access control decisions. If the principal was not
authenticated, only one privilege attribute is returned. This has typePublic and no
meaningful value.

• Other attributes, such as audit or charging identities, if available.

At the client, this generally gets the user’s (or other principal’s) privileges. At the
target, it gets the received privileges.

AttributeList get_attributes(
in AttributeTypeList attributes

);

Parameters

Return Value

The set of attributes or identities reflecting the state of theCredentials.

2.3.7.3 The SecurityLevel2::Current Interface

The following operations are to be found in theSecurityLevel2::Current interface.

attributes The set of security attributes (privilege attributes and identities
whose values are desired. if this list is empty, all attributes are
returned.
Security Service V1.5 Application Developer’s Interfaces May 2000 2-95



2

y

sk

tion
ous
oes

iated

s

set_credentials

This operation pertains to the thread specific state associated with theCurrent object.
Credentials are associated withCurrent for different types of use.Credentials are
automatically associated withCurrent by the object system at initialization,
authentication, and object invocation. However, the application may want to specif
particular credentials to use. Theset_credentials operation sets the specified
credentials as the default one for the following:

• Subsequentinvocations made by that client. (SecInvocationCredentials)
This may be done to reduce the privileges available to that client by setting
credentials having fewer privileges. Also, an intermediate object can explicitly a
for the received credentials to be delegated by using the
Current::received_credentials as the specified credentials onset_credentials .

• Non-repudiation. (SecNRCredentials)
As for the invocation credentials, non-repudiation credentials may be set
transparently to the business application. The credentials used for non-repudia
may be the same as the credentials used for invocations. Note that in the previ
sentence the word “credentials” is used in the English sense of the word and it d
not refer to aCredentials object.

void set_credentials(
in CredentialType cred_type,
in CredentialsList creds,
in DelegationMode del

);

Parameter

Return Value

None

get_credentials

This thread specific operation allows an application access to the credentials assoc
with its execution environment. As forset_credentials , the application can ask for
the default credentials for future invocations or the ones used for non-repudiation.

An application will normally get invocation or other credentials when it wants to
modify them (for example, reduce the privileges available).

cred_type The type of credential to be set (i.e.,SecInvocationCredentials
or SecNRCredentials).

creds The object reference of theCredentialsList, which is to become
the default

del The delegation mode for the credentials being set takes value
of Delegateor NoDelegate.
2-96 Security Service V1.5 May 2000



2

rted

er
is

e
t

CredentialsList get_credentials(
in CredentialType cred_type

);

Parameters

Return Value

A CredentialsList.

received_credentials

At a target object, this thread specific attribute is the credentials received from the
client. They are the credentials of the principal identified that made the invocation.

In the case of a pure client, for example, an application that is not servicing an
invocation on one of its objects (if any), accessing thereceived_credentials attribute
causes aCORBA::BAD_OPERATION exception to be raised.

readonly attribute ReceivedCredentials received_credentials;

Return Value

The ReceivedCredentials object reference received from the requester.

supported_mechanisms

This readonly attribute returns the list of supported mechanisms and options suppo
by the ORB security service. It has the following definition:

readonly attribute MechandOptionsList supported_mechanisms;

own_credentials

Any application owns a set of credentials which it obtains through the process of
authentication of the principal that initiates the execution of the program, and furth
from other credentials that such a principal might bestow upon the application. Th
attribute returns this set of credentials.

readonly attribute CredentialsList own_credentials;

Return Value

A sequence ofCredentials object references owned by the application.

get_policy

This capsule specific operation returns the policy object of the specified policy_typ
for the non CORBA object client from which it is invoked, or for the CORBA objec
from which it is invoked.

cred_type The type of credential to be obtained.
Security Service V1.5 Application Developer’s Interfaces May 2000 2-97



2

e
ject.

by
Policy get_policy(
in CORBA::PolicyType policy_type

);

Parameters

Return Value

A policy object which can be used to interrogate the policy in force as defined in
Section 2.4, “Administrator’s Interfaces,” on page 2-116. For example, the secure
invocation policy would give the secure associations defaults for this object, and th
delegationpolicywouldsaywhichcredentialsweredelegatedon invocationsby thisob

required_rights_object

This capsule specific read only attribute is theRequiredRights object available in the
environment. This object is rarely used by applications directly. It is generally used
Access Decisionobjects to find the rights required to use a particular interface;
however, it could be used directly by the application if it wishes to do all its own
access control, and base this onRights.

readonly attribute RequiredRights required_rights_object;

Return Value

An object references to aRequiredRights object. The operations in the interface of
this object are defined in Section 2.4.4, “Access Policies,” on page 2-119.

principal_authenticator

This capsule specific read only attribute is thePrincipalAuthenticator object
available in the environment. It can be used by the application to authenticate
principals and obtainCredentials containing their privilege attributes.

readonly attribute PrincipalAuthenticator principal_authenticator;

Return Value

An object references to aPrincipalAuthenticator object. The operations in the
interface of this object are defined in Section 2.1.2, “Principals and Their Security
Attributes,” on page 2-3.

access_decision

This capsule specific read only attribute is theAccessDecision object available in
the environment. It can be used by the application to obtain decisions regarding
accessibility of specific objects from this environment.

policy_type The type of policy to be obtained.
2-98 Security Service V1.5 May 2000



2

f

eds

s

es
ed for

,

t on
readonly attribute AccessDecision access_decision;

Return Value

An object references to anAccessDecision object. The operations in the interface o
this object are defined in Section 2.3.10, “Access Control,” on page 2-103.

audit_decision

This capsule specific read only attribute is theAuditDecision object available in the
environment. It can be used by the application to obtain information about what ne
to be audited for the specified object/interface in this environment.

readonly attribute AuditDecision audit_decision;

Return Value

An object references to anAuditDecision object. The operations in the interface of
this object are defined in Section 2.3.8, “Security Audit,” on page 2-100.

get_security_mechanisms

This operation is for use by security sophisticated applications. It is used by client
that wish to determine the security mechanisms, security names, and association
options that are associated with the target. It is possible for different security nam
and association options to be used for the target, depending on the mechanism us
the target.

Note – The security name may be shared by several objects.

SecurityMechanismDataList get_security_mechanisms(
in Object obj_ref

);

Parameters

Return Value

A list of SecurityMechanismData structures, each containing a security mechanism
security name, and association options that are associated with the target object.

remove_own_credentials

This operation is used by applications that wish to remove credentials that were pu
the own_credentials list by virtue of thePrincipalAuthenticator . This operation
does not manipulate or destroy the objects in any way. The givenCredentials object

obj_ref The Object reference of the target object of which the security
mechanism data is being sought.
Security Service V1.5 Application Developer’s Interfaces May 2000 2-99



2

dit

g

. It

the

the

in
(as opposed to one produced by acopy operation) must reside on the list of the
Current object’sown_credentials ; otherwise, aCORBA::BAD_PARAM
exception is raised.

void remove_own_credentials(
in Credentials creds

),

Parameters

Return Value

None.

2.3.8 Security Audit

2.3.8.1 Description of Facilities

Auditing of object invocations is done automatically by the ORB according to the au
invocation policies (Security::SecClientInvocationAudit and
Security::SecTargetInvocationAudit ) for this application.

Applications can also audit their own security relevant activities, where the auditin
performed by the ORB does not audit the required activities and/or data.

In this case, the application is responsible for enforcing the application audit policy
uses anaudit_needed operation on theAudit Decision object for the policy to decide
which activities to audit.

Audit information is passed to anAudit Channel object in the form of an audit record.
The audit record must contain, or be sufficient to identify:

• The type of event.

• The principal responsible for the action, identified by its credentials.

• Event-specific data associated with the event type. This will vary, depending on
event type.

• The time. This may or may not be secure.

It may also want to record some of the values used for selecting whether to audit
event, for example, its success or failure.

An application audit policy will specify the event families and event types as defined
Section 2.4.5, “Audit Policies,” on page 2-131.

creds TheCredentials object to be removed from the list.
2-100 Security Service V1.5 May 2000



2

d
be
the
ng

e

h

2.3.8.2 The SecurityLevel2::AuditDecision Interface

The Audit Decision object has theSecurityLevel2::AuditDecision interface. Its
operations described below, help specify what to audit. It is alocality constrained
object.

The Audit Decision object is alocality constrained object.

audit_needed

This operation on theAudit Decision object is used to decide whether an audit recor
should be written to the audit channel. The application specifies the event type to
checked and the values for the selectors, which the audit policy requires to make
decision. This operation identifies the interface associated with the audit event usi
the InterfaceName selector value withinvalue_list , if defined. If the
InterfaceName selector value is the empty string, the most derived interface in th
ObjectRef selector value is used.ObjectRef is also used to find the domain
containing the relevant audit policy. IfObjectRef is not defined,audit_needed will
not be able to match anyAuditPolicy and will return false. To ensure that
audit_needed can match against any potentialAuditPolicy , the caller must supply
all selector values (ObjectRef, Operation, Initiator , andSuccessFailure) in
value_list .

boolean audit_needed(
in AuditEventType event_type,
in SelectorValueList value_list

);

Parameters

Return Value

audit_channel

This attribute of theAudit Decision object provides the audit channel associated wit
this audit decision object.

readonly attribute AuditChannel audit_channel;

Return Value

The Audit Channel object associated with theAudit Decision object.

event_type Event type associated with the operation.

value_list List of zero or more selector id value pairs.

TRUE If an audit record should be created and sent to the audit
channel.

FALSE If an audit record is not needed.
Security Service V1.5 Application Developer’s Interfaces May 2000 2-101



2

ore,
s be
he

r to

nt
A standard audit policy is specified in Section 2.4, “Administrator’s Interfaces,” on
page 2-116, but if this is to be replaceable without ORB/interceptor changes, a
standard interface needs to be available for the ORB or interceptor to call. Theref
for replaceability, the selectors used on audit needed during invocation must alway
the same (seevalue_list above), though not all of these need to be used in taking t
decision to audit, depending on policy. Note that the time is not passed over this
interface. If the selectors specified in the audit policy use time to decide on whethe
audit the event, theAudit Decision object should obtain the current time itself.

2.3.8.3 The SecurityLevel2::AuditChannel Interface

The single operation in theSecurityLevel2::AuditChannel interface is used to write
the audit records. TheAudit Channel object is alocality constrained object.

audit_write

This operation writes an audit record to theAudit Channel object, and hence the
audit trail. The audit trail is implementation-specific and outside the scope of this
chapter. It is expected to be an event service of some sort, such as a CORBA Eve
Service.

void audit_write(
in AuditEventType event_type,
in CredentialsList creds,
in UtcT time,
in SelectorValueList descriptors,
in Opaque event_specific_data

);

Parameters

Return Value

None.

event_type The type of event being audited.

creds The credentials of the principal responsible for the event. If
no credentials are specified, theown_credentials
attribute associated withCurrent are used.

time The time the event occurred.

descriptors A set of values to be recorded associated with the event in
the audit trail. These are often the same values as those
used to select whether to audit the event.

event_specific_data Data specific to a particular type of event, to be recorded in
the audit trail.
2-102 Security Service V1.5 May 2000



2

to
udit

ed

dit
. For

the
audit_channel_id

This is a readonly attribute that contains the id of this audit channel, which is used
identify it in the corresponding audit policy object. This is necessary because the a
channel object itself has to be alocality constrained object by virtue of the fact that
theaudit_write operations passes a list ofCredentials, a locality constrained object,
as a parameter, while the audit policy object needs to be not thus constrained.

The audit channel identified by theaudit_channel_id in the Audit Policy object is
actually associated with theAudit Channel interface by theAudit Decision object
when itsaudit_channel attribute is accessed.

readonly attribute AuditChannelId  audit_channel_id;

Return Value

2.3.8.4 Portability Implications

An application relying on the system audit policies enforced at invocation time is
portable to different environments, although the audit policies themselves may ne
changing.

Applications with their own application audit policies are portable, providing the au
policy itself is portable and the selectors used are available in these environments
example, if selectors use privileges, the same ones must be available.

2.3.9 Administering Security Policy

When an object is created, it automatically becomes a member of one or more
domains, and therefore is subject to the security policies of those domains.

Security aware applications can administer security policies (providing they are
authorized to do so) using the interfaces described in Section 2.4, “Administrator’s
Interfaces,” on page 2-116.

2.3.10 Access Control

2.3.10.1 Description of Facilities

Access policies for applications may be enforced the following ways:

• Automatically by the ORB services on object invocation, to determine whether
caller has the right to invoke an operation on an object.

• By the application itself, to enforce further controls on who can invoke it to do
what.

• By the application to control access to its own internal functions and state.

audit_channel_id The channel id of the audit channel.
Security Service V1.5 Application Developer’s Interfaces May 2000 2-103



2

fy
ally
, so
ive
-

ify

ion

an

er
ck.

hes
in

s, and

be

ould
This section is concerned with applications that wish to enforce their own access
controls, either supplementing the automatic controls on invocation or controlling
internal functions.

As explained in Access Policies under Section 2.1.4, “Access Control Model,” on
page 2-7, the decision on whether to allow such access may use the following:

• The principal’s credentials (which either contain its privilege attributes, or identi
the principal so these can be obtained). Using only the principal’s identity gener
requires that identity to be known at all targets, and leads to scalability problems
its use is depreciated. Use of the principal’s role or group(s) are more likely to g
easier administration in large systems, as would security clearance. Enterprise
defined attributes can also be used when supported.

• The target’s control attributes such as an ACL or security classification.

• Other relevant information about the action such as the operation (on object
invocation) and parameters, and also context information such as time.
The application can use rights associated with an interface (as described in
Section 2.4.3, “Security Policies Introduction,” on page 2-118) rather than spec
controls for individual operations.

• The security policy rules using this information as enforced by the access decis
function.

The access policies enforced automatically by the ORB during object invocation c
take into account the principal’s credentials, the target’s control attributes, the
operation and the time (though the time is not used in the standard access policy
defined in Section 2.4, “Administrator’s Interfaces,” on page 2-116). However, the
ORB does not use the parameters to the operation for controlling access. So, for
example, if there is a rule that only senior managers can authorize expenditure ov
$5000, the application is likely to need its own function to perform the required che

Where an application enforces its own access decisions, it will be responsible for
maintaining its own control information about operations, functions, and data it wis
to protect. It can do this in a way specific to its own particular functions or data, but
some cases, it is possible to have a more generic way of handling access decision
in these cases, it may be possible to use a common access decision object with
common administration of the ACLs or other control attributes.

2.3.10.2 The Access Decision Object

The access decision functionality is encapsulated inAccess Decisionobjects. These
may require different information depending on, for example, the action or data to
controlled and the security policy rules as previously described. TheAccess Decision
object is alocality constrained object.

The Access Decisionobject has theaccess_allowed operation as is used for
enforcing access policies in the ORB (see below). The input parameters to this sh
normally specify:

• The privileges of the initiator of the action. The form of these depends on the
specific policy. Some options are:
2-104 Security Service V1.5 May 2000



2

on

tual
r an
• The privileges of the initiator as supplied by aget_attributes operation on
Current (see “The SecurityLevel1::Current Interface” on page 2-95).

• A credentials object, which represents principal.

• Other information required by the access decision function, including:

• Application-level decisions on whether an invocation is permitted, the operati
and parameters passed in the request, and the object reference.

• Control of access to internal functions and data, the action, and relevant
parameters.

The return value from theaccess_allowed operation is eitherTRUE signifying
access is permitted, orFALSE signifying that it is not.

It is recommended that where possible, access decisions are made by suchAccess
Decisionobjects (or at least separate internal functions) that hide details of the ac
security policy used, so the application does not need to know, for example, whethe
ACL or label-based policy is used.

2.3.10.3 The SecurityLevel2::AccessDecision Interface

The Access Decisionobject is alocality constrained object. TheAccessDecision
interfaces have the following single operation:

access_allowed

boolean access_allowed(
in SecurityLevel2::CredentialsList cred_list,
in Object target,
in CORBA::Identifier operation_name,
in CORBA::Identifier target_interface_name

);

Parameters

cred_list The list ofCredentials associated with the request.
The list may be empty (in the case of unauthenticated
requests), it may contain only a single credential, or it
may contain several credentials (in the case of
delegated or otherwise cascaded requests). TheAccess
Decisionobject is presumed to have rules for dealing
with all these cases.
Security Service V1.5 Application Developer’s Interfaces May 2000 2-105



2

of
d to
are

e
ose

ibed
f

y be

in

t.
Return Value

2.3.10.4 Portability Implications

Portability of applications enforcing their own access controls is improved by use
Access Decisionobjects as previously described. The application then does not nee
know the particular rules used, and even which principal and object attribute types
used to decide whether access should be permitted. It can also hide whether the
principal’s credentials include all privilege attributes needed, or whether these are
obtained dynamically when needed.

Different systems may need to support different access control policies. By hiding
details of the access control rules used to enforce the policy behind a standard
interface, the application will generally be portable to environments with different
policies.

Applications that use their own specific code to make access decisions will only b
portable to systems that support the identity and privilege attribute types used in th
decisions with the same syntax.

2.3.11 Delegation Facilities

2.3.11.1 Description of Facilities

An operation on a target object may result in calls on many other objects as descr
in Section 2.1.6, “Delegation,” on page 2-13. An intermediate object in this chain o
objects may:

• Delegate the credentials received (often containing the initiating principal’s
privileges) to the next object in the chain, so access decisions at the target ma
based on that principal’s privileges.

• Act on its own behalf, so use its own credentials when invoking another object
the chain.

target The reference used to invoke the target object. The
method invoked.

operation_name The name of the operation being invoked on the targe

target_interface_name The name of the interface to which the operation being
invoked belongs. This may not be required in some
implementations and will only be required in cases in
which the operation being invoked does not belong to
the interface of which the target object is a direct
instance.

boolean A return value ofTRUE indicates that the request should
be allowed, otherwiseFALSE.
2-106 Security Service V1.5 May 2000



2

nto

btain
le,

tion

es

ibes

are

the

e

t

aces
ny

om
• Supply privileges from both, so access decisions at the target object can take i
account both the initiating principal’s privileges and where these came from.

Which of these delegation modes should be used depends on the application. For
example, a user might call a database object asking for some data, and this may o
the data from a file that also contains data belonging to other users. In this examp
the database object would control access to the data using the user’s privileges,
whereas the filestore object would use the database’s privileges.

In general, the delegation mode used is specified by the administrator in the delega
policy for objects of this type in this domain. However, a security aware application
can also specify the delegation mode it wants to use, as it may want different mod
when invoking different objects.

2.3.11.2 Operations

All the operations used for delegation are specified elsewhere. This section descr
how they are used during delegation.

The way the received and intermediate’s own credentials are combined in
SecCompositeDelegation is not defined. Depending on the implementation:

• The initiating principal’s and the intermediate’s own credentials are passed, and
available separately at the target.

• The received credentials and intermediate’s own credentials are combined, so
target sees only a single credentials object with privileges from each of these.

• Credentials from all objects in the delegation chain are passed and are availabl
separately to the target.

None of these particular composite delegation modes are part of the Security
Functionality Level 2. They are described here because of the effect on the
Current::received_credentials (see Section 2.3.7.3, “The SecurityLevel2::Curren
Interface,” on page 2-95), which a target object uses to find out who called it. The
target normally uses this to get privileges for use in access control decisions.

2.3.11.3 Portability Implications

Where possible, the delegation mode should be set using the administrative interf
to the delegation policy, so applications may delegate privileges (or not) without a
application level code, and so be portable.

If an application sets its own delegation mode, it should be able to handle a
CORBA::NO_IMPLEMENT exception ifSecCompositeDelegation is specified,
as this may not be supported.

If the application wants to enforce its own access policy, it should use anAccess
Decisionobject (as described in Section 2.3.10, “Access Control,” on page 2-103),
which hides whether access decisions utilize the initiator’s privileges separately fr
the delegate’s privileges.
Security Service V1.5 Application Developer’s Interfaces May 2000 2-107



2

es
ely
le.

at
ple,

)

tion

ay

ill

ng a

g

nd
However, where an application wants to provide specific checks which intermediat
have been involved in performing the original user’s operation, such checks are lik
to depend on the delegation scheme and its implementation, and so not be portab

2.3.12 Non-repudiation

Non-repudiation is an optional facility.

2.3.12.1 Description of Facilities

The Non-repudiation Service provides evidence of application actions in a form th
cannot be repudiated later. This evidence is associated with some data (for exam
the amount field of a funds transfer document).

Non-repudiation evidence is provided in the form of a token. Two token types are
supported:

• Token including the associated data

• Token without included data (but with a unique reference to the associated data

Non-repudiation tokens may be freely distributed. Any possessor of a non-repudia
token (and the associated data, if not included in the token) can use the non-
repudiation Service to verify the evidence. Any holder of a non-repudiation token m
store it (along with the associated data, if not included in the token) for later
adjudication.

The non-repudiation interfaces support generation and verification of tokens
embodying several different types of evidence. It is anticipated that the following w
be the most commonly used non-repudiation evidence token types:

• Non-repudiation of Creation prevents a message creator's false denial of creati
message.

• Non-repudiation of Receipt prevents a message recipient's false denial of havin
received a message.

Generation and verification of non-repudiation tokens require as context a non-
repudiation credential, which encapsulates a principal's security information
(particularly keys) needed to generate and/or verify the evidence. Most operations
provided by the Non-repudiation Service are performed onNRCredentials objects.

Non-repudiation Service operations supported by theNRCredentials interface are as
follows.

• set_NR_features specifies the features to apply to future evidence generation a
verification operations.

• get_NR_features returns the features which will be applied to future evidence
generation and verification operations.

• generate_token generates a non-repudiation token using the current non-
repudiation features. The generated token may contain:

• Non-repudiation evidence.
2-108 Security Service V1.5 May 2000



2

n-

e
.

the
en
The

any

f a

e

• A request, containing information describing how a partner should use the No
repudiation Service to generate an evidence token.

• Both evidence and a request.

• verify_evidence verifies the evidence token using the current non-repudiation
features.

• get_token_details returns information about an input non-repudiation token. Th
information returned depends upon the type of the token (evidence or request)

• form_complete_evidence is used when the evidence token itself does not
contain all the data required for its verification, and it is anticipated that some of
data not stored in the token may become unavailable during the interval betwe
generation of the evidence token and verification unless it is stored in the token.
form_complete_evidence operation gathers the “missing” information and
includes it in the token so that verification can be guaranteed to be possible at
future time.

Theverify_evidence operation returns an indicator (evid_complete ), which can
be used to determine whether the evidence contained in a token is complete. I
token’s evidence is not complete, the token can be passed to
form_complete_evidence to complete it.

If complete evidence is always required, the call toform_complete_evidence
can, in some cases, be avoided by setting theform_complete request flag on the
call to verify_evidence ; this will result in a complete token being returned via th
evid_out parameter.

2.3.12.2 Non-repudiation Service Data Types

The following data types are used in the Non-repudiation Service interfaces:

module NRservice {
typedef MechanismType NRMech;
typedef ExtensibleFamily NRPolicyId;

enum EvidenceType {
SecProofofCreation,
SecProofofReceipt,
SecProofofApp roval,
SecProofofRetrieval,
SecProofofOrigin,
SecProofofDelivery,
SecNoEvidence     // used when request-only token desired

};

enum NRVerificationResult {
SecNRInvalid,
SecNRValid,
SecNRConditionallyValid

};
Security Service V1.5 Application Developer’s Interfaces May 2000 2-109



2

y the

ce
typedef unsigned long DurationInMinutes;

const DurationInMinutes DURATION_HOUR = 60;
const DurationInMinutes DURATION_DAY   = 1440;
const DurationInMinutes DURATION_WEEK = 10080;
const DurationInMinutes DURATION_MONTH = 43200;// 30 days
const DurationInMinutes DURATION_YEAR = 525600;//365 days

typedef long TimeOffsetInMinutes;

struct NRPolicyFeatures {
NRPolicyId policy_id;
unsigned long policy_version;
NRMech mechanism;

};

typedef sequence <NRPolicyFeatures> NRPolicyFeaturesList;

// features used when generating requests
struct RequestFeatures {

NRPolicyFeatures requested_policy;
EvidenceType requested_evidence;
string requested_evidence_generators;
string requested_evidence_recipients;
boolean include_this_token_in_evidence;

};
};

2.3.12.3 The NRservice::NRCredentials Interface

This section describes the Non-repudiation Service operations that are provided b
NRCredentials interface.

set_NR_features

When anNRCredentials object is created, it is given a default set of NR features,
which determine what NR policy will be applied to evidence generation and
verification requests.

Security-aware applications may set NR features to specify policy affecting eviden
generation and verification. The interface for setting NR features is:

boolean set_NR_features(
in NRPolicyFeaturesList requested_features,
out NRPolicyFeaturesList actual_features

);
2-110 Security Service V1.5 May 2000



2

NR

in an
is
Parameters

Return Value

get_NR_features

This operation is provided to allow security-aware applications to determine what
policy is currently in effect:

NRPolicyFeaturesList get_NR_features ();

Parameters

None

Return Value

The current set ofNR features in use in thisNRCredentials object.

generate_token

This operation generates a non-repudiation token associated with the data passed
input buffer. Environmental information (for example, the calling principal’s name)
drawn from theNRCredentials object.

If the data for which non-repudiation evidence is required is larger than can
conveniently fit into a single buffer, it is possible to issue multiple calls, passing a
portion of the data on each call. Only the last call (i.e., the one on which
input_buffer_complete = true) will return an output token and (optionally) an
evidence check.

void generate_token(
in Opaque input_buffer,
in EvidenceType generate_evidence_type,
in boolean include_data_in_token,
in boolean generate_request,
in RequestFeatures request_features,
in boolean input_buffer_complete,
out Opaque nr_token,
out Opaque evidence_check

);

requested_features The non-repudiation features required.

actual_features The NR features that were set (may differ from those
requested depending on implementation).

TRUE The requested features were equivalent.

FALSE If the actual features differ from the requested features.
Security Service V1.5 Application Developer’s Interfaces May 2000 2-111



2

lling
est as

fail;

d

a

Parameters

Return Value

None.

verify_evidence

Verifies the validity of evidence contained in an input NR token.

If the token containing the evidence to be verified was provided to the calling
application by a partner responding to the calling application’s request, then the ca
application should pass the evidence check it received when it generated the requ
a parameter toverify_evidence along with the token it received from the partner.

It is possible to request the generation of complete evidence. This may succeed or
if it fails, a subsequent call toform_complete_evidence can be made. Output
indicators are provided, which give guidance about the time or times at which
form_complete_evidence should be called; see the parameter descriptions for
explanations of these indicators and their use. Note that the time specified by

input_buffer Data for which evidence should be generated.

generate_evidence_type Type of evidence token to generate (may be
SecNoEvidence ).

include_data_in_token If set TRUE, data provided ininput_buffer will be
included in generated token; otherwiseFALSE.

generate_request The output token should include a request, as describe
in the request_features parameter.

request_features A structure describing the request. Its fields are:
• requested_policy: Non-repudiation policy to use when

generating evidence tokens in response to this request.
• requested_evidence: Type of evidence to be generated in

response to this request.
• requested_evidence_generators: Names of partners who

should generate evidence in response to this request.
• requested_evidence_recipients: Names of partners to

whom evidence generated in response to this request
should be sent.

• include_this_token_in_evidence: If set true, the evidence
token incorporating the request will be included in the data
for which partners will generate evidence. If set false,
evidence will be generated using only the associated dat
(and not the token incorporating the request).

• input_buffer_complete: True if the contents of the input
buffer complete the data for which evidence is to be
generated; false if more data will be passed on a
subsequent call.

• nr_token: The returned NR token.
• evidence_check: Data to be used to verify the requested

token(s) (if any) when they are received.
2-112 Security Service V1.5 May 2000



2

his
y be

ot
complete_evidence_before may be earlier than that specified by
complete_evidence_after ; in this case it will be necessary to call
form_complete_evidence twice.

Because keys can be revoked or declared compromised, the return from
verify_evidence cannot in all cases be a definitive “SecNRValid” or
“SecNRInvalid”; sometimes “SecNRConditionallyValid” may be returned, depending
upon the policy in use. “SecNRConditionallyValid” will be returned if:

• the interval during which the generator of the evidence may permissibly declare
key invalid has not yet expired (and therefore it is possible that the evidence ma
declared invalid in the future), or

• trusted time is required for verification, and the time obtained from the token is n
trusted.

NRVerificationResult verify_evidence(
in Opaque input_token_buffer,
in Opaque evidence_check,
in boolean form_complete_evidence,
in boolean token_buffer_complete,
out Opaque output_token,
out Opaque data_included_in_token,
out boolean evidence_is_complete,
out boolean trusted_time_used,
out TimeT complete_evidence_before,
out TimeT complete_evidence_after

);

Parameters

input_token_buffer Buffer containing (possibly a portion, possibly all of)
evidence token to be verified; buffer may also contain
data associated with evidence token (parsing of buffer
in this case is understood only by NR mechanism, see
get_token_details ).

evidence_check The evidence check.

form_complete_evidence SetTRUE if complete evidence is required; otherwise
FALSE.

token_buffer_complete SetTRUE if the input_token_buffer completes the
input token;FALSE if more input token data remains
to be passed on a subsequent call.

output_token If form_complete_evidence was set toTRUE, this
parameter will contain complete evidence (and the
Return Value will beSecNRValid) or an “augmented”
but still incomplete evidence token, in which case
SecNRConditionallyValid is returned.
Security Service V1.5 Application Developer’s Interfaces May 2000 2-113



2

t).

ion
e and
nce,
ted

to
the
Return Value

get_token_details

The information returned depends upon the type of the token (evidence or reques
The mechanism that created the token is always returned.

• If the input token contains evidence, the following is returned: the non-repudiat
policy under which the evidence has been generated, the evidence type, the dat
time when the evidence was generated, the name of the generator of the evide
the size of the associated data, and an indicator specifying whether the associa
data is included in the token.

• If the input token contains a request, the following is returned: the name of the
requester of the evidence, the non-repudiation policy under which the evidence
send back should be generated, the evidence type to send back, the names of

data_included_in_token Data associated with the evidence, extracted from
input token (may be null).

evidence_is_complete TRUE if evidence in input token is complete,
otherwiseFALSE.

trusted_time_used TRUE if the evidence token contains a time
considered to be trusted according to the rules of the
non-repudiation policy.FALSE indicates that the
security policy mandates trusted time and that the time
in the token is not considered to be trusted.

complete_evidence_before If evidence_is_complete is FALSE and the return
value fromverify_evidence is
SecNRConditionallyValid , the caller should call
form_complete_evidence with the returned output
token before this time. This may be required, for
example, in order to ensure that the time skew between
the evidence generation time and the trusted time
service’s countersignature on the evidence falls within
the interval allowed by the current NR policy.

complete_evidence_after If evidence_is_complete is FALSE and the return
value fromverify_evidence is
SecNRConditionallyValid , the caller should call
form_complete_evidence with the returned output
token after this time. This may be required, for
example, to ensure that all authorities involved in
generating the evidence have passed the last time at
which the current NR policy allows them to repudiate
their keys.

SecNRInvalid Evidence is invalid.

SecNRValid Evidence is valid.

SecNRConditionallyValid Evidence cannot yet be determined to be invalid
2-114 Security Service V1.5 May 2000



2

ames
en

nput
recipients who should generate and distribute the requested evidence, and the n
of the recipients to whom the requested evidence should be sent after it has be
generated.

• If the input token contains both evidence and a request, an indicator describing
whether the partner’s evidence should be generated using only the data in the i
token, or using both the data and the evidence in the input token.

void get_token_details(
in Opaque token_buffer,
in boolean token_buffer_complete,
out string token_generator_name,
out NRPolicyFeatures policy_features,
out EvidenceType evidence_type,
out UtcT evidence_generation_time,
out UtcT evidence_valid_start_time,
out DurationInMinutes evidence_validity_duration,
out boolean data_included_in_token,
out boolean request_included_in_token,
out RequestFeatures request_features

);

Parameters

Return Value

None.

token_buffer Evidence token to parse.

token_buffer_complete Indicator when the token has been fully provided.

token_generator_name Principal name of token generator.

policy_features Describes the policy used to generate the token.

evidence_type Type of evidence contained in the token (may be
SecNoEvidence ).

evidence_generation_time Time when evidence was generated.

evid_validity_start_time Beginning of evidence validity interval.

evidence_validity_duration Length of evidence validity interval.

data_included_in_token TRUE if the token includes the data for which it
contains evidence, otherwiseFALSE.

request_included_in_token TRUE if the token includes a request, otherwise
FALSE.

evidence_generation_time Time when evidence was generated.
Security Service V1.5 Application Developer’s Interfaces May 2000 2-115



2

ied

ion
e

al

rity
form_complete_evidence

form_complete_evidence is used to generate an evidence token that can be verif
successfully with no additional data at any time during its validity period.

boolean form_complete_evidence(
in Opaque input_token,
out Opaque output_token,
out boolean trusted_time_used,
out TimeT complete_evidence_before,
out TimeT complete_evidence_after

);

Parameters

Return Value

2.4 Administrator’s Interfaces

This section describes the administrative features of the specification. Administrat
specifies the policies that control the security-related behavior of the system. Thes
features form an ‘Administrator’s View,’ encompassing the interfaces that a human
administrator would need to use, but the facilities may also be used by convention
applications that wish to be involved in administrative actions. ‘Administrator’ may
therefore refer to a human or system agent.

Most interfaces defined here are in Security Functionality Level 2, as Level 1 secu
does not include administration interfaces.

token_buffer Evidence token to be completed..

output_token The “augmented” evidence token may be complete.

trusted_time_used TRUE if the token’s generation time can be trusted,
otherwiseFALSE. If trusted time is required by the
policy under which the evidence will be verified, and
if this indicator is not set, the evidence will not be
considered complete.

complete_evidence_before If the return value isFALSE,
form_complete_evidence should be called
before this time.

complete_evidence_after If the return value isFALSE,
form_complete_evidence should be called after
this time.

TRUE Evidence is now complete.

FALSE Evidence is not yet complete.
2-116 Security Service V1.5 May 2000



2

g
that
tate
cess

m. It

and
he

ent
tion

ns to

y.
s of

iple

a

2.4.1 Concepts

2.4.1.1 Administrators

This specification imposes no constraints on how responsibilities are divided amon
security administrators, but in many cases an enterprise will have a security policy
restricts the responsibilities of any one individual. Also, legal requirements may dic
a separation of roles so that, for example, there are different administrators for ac
control and auditing functions.

Administrators are subject to the same security controls as other users of the syste
is expected that an enterprise will define roles (or other privileges) that certain
administrators will adopt. Administrative operations are subject to access controls
auditing in the same way as other object invocations, so only administrators with t
required administrative privileges will be able to invoke administrative operations.

This specification does not define administrative functions concerning the managem
of underlying mechanisms supporting the security services, such as an Authentica
Service, Key Distribution Service, or Certification Authority.

2.4.1.2 Policy Domains

Securityadministrators specify securitypolicies for particular security policy
domains (for brevity, only the words in bold are used for the remainder of this
section).

A domain includes an object, called thedomain manager, which has associated with
it the policy objects for this domain, and notionally contains zero or more other
objects, which are domainmembersand subject to the policies specified by the policy
objects associated with the domain manager.

The domain manager records the membership of the domain and provides the mea
add and remove members. The domain manager is itself a member of a domain,
possibly the domain it manages.

There are different types of policy objects for administering different types of polic
As described in “Security Policy Domains” on page 2-21, domains may be member
other domains, forming containment hierarchies. Because different kinds of policy
affect different groups of objects, objects (and domains) may be members of mult
domains.

The policies that apply to an object are those of all its enclosing domains.

2.4.1.3 Security Policies

This specification covers administration of security policies, which are enforced by
secure object system in either of the following ways:
Security Service V1.5 Administrator’s Interfaces May 2000 2-117



2

es,

ing

ject

e

• Automatically on object invocation. This covers system policies for security
communications between objects, control of whether this client can use this
operation on this target object, whether the invocation should be audited, and
whether an original principal’s credentials can be delegated.

• By the application. This covers security policies enforced by applications.
Applications may enforce access, audit, and non-repudiation policies. The
application policies may be managed using domains as for other security polici
or the application can choose to manage its own policies in its own way.

Invocation time policies for an object can be applicable only when this object is act
as a client, only when it is a target object, or whenever it is acting as either.

Security policies may be administered by any application with the right to use the
security administrative interfaces. This is subject to the invocation access control
policy for the administrative interface.

2.4.2 Domain Management

The Domain Management facilities (defined in the ORB Interface chapter of the
Common Object Request Broker: Architecture and Specification) are used by the
Security Service as described in the following sections.

2.4.3 Security Policies Introduction

Invocation security policies are enforced automatically by ORB services during ob
invocation. These are:

• invocation accesspolicies (Security::SecClientInvocationAccess and
Security::SecTargetInvocationAccess , interface
SecurityAdmin::AccessPolicy ) for controlling access to objects.

• invocation audit policies (Security::SecClientInvocationAudit and
Security::SecTargetInvocationAudit , interfaceSecurityAdmin::AuditPolicy )
control which operations on which objects are to be audited.

• invocation delegationpolicies (Security::SecDelegation , interface
SecurityAdmin::DelegationPolicy ) for controlling the delegation of privileges.

• secure invocationpolicies (Security::SecClientSecureInvocation and
Security::SecTargetSecureInvocation , interface
SecurityAdmin::SecureInvocationPolicy ) for security associations, including
controlling the delegation of client’s credentials, and message protection.

Different policies generally apply when an object acts as a client from when it is th
target of an invocation.

In addition to these invocation policies, there are a number of policy types, which
apply independently of object invocation. These are:

• application accesspolicy (Security::SecApplicationAccess , interface
SecurityAdmin::AccessPolicy ), which applications may use to manage and
enforce their access policies.
2-118 Security Service V1.5 May 2000



2

ce

ced
e

rface

or

d.
licy
ble

in

nt

ive

,

t

d

n.
• application audit policy (Security::SecApplicationAudit , interface
SecurityAdmin::AuditPolicy ), which applications can use to manage and enfor
their audit policies.

• non-repudiation policies (Security::SecNonRepudiation , interface
SecurityAdmin::NRPolicy ) determine the rules for the generation and use of
evidence.

There is also a policy concerned with creation of object references, which is enfor
by POA::create_reference and variants thereof or equivalent operation. This is th
construction policy (CORBA::SecConstruction ) which controls whether a new
domain is created when an object of a specified type is created. (See the ORB Inte
chapter of theCommon Object Request Broker: Architecture and Specification.)

Note – Policies associated with underlying security technology are not included. F
example, there are no policies for principal authentication as this is often done by
specific security services.

Operations are provided for setting all the types of security policies previously liste
In each case, these management operations permit administration of standard po
semantics supported by the interfaces defined in this specification. It is also possi
for implementors to replace the policy objects, the operations of which are defined
this specification, with different policy objects supporting different semantics. In
general, such policy objects will also have management operations that are differe
from those defined in this specification.

2.4.4 Access Policies

There are two types of invocation access policies: 1) the Client Invocation Access
policy (Security::SecClientInvocationAccess ), which is used at the client side of
an invocation, and 2) the Target Invocation Access policy
(Security::SecTargetInvocationAccess ), which is used at the target side.

There is one policy type for application access. However, no standard administrat
interface to this is specified, as different applications have different requirements.

Access Policies control access bysubjects(possessing Privilege Attributes), to objects
usingrights. Privilege Attributes have already been discussed (in Section 2.3,
“Application Developer’s Interfaces,” on page 2-71); rights are described in the nex
section.

2.4.4.1 Rights

The standardAccess Policyobjects in a secure CORBA system implement access
policy usingrights (though implementations may define alternative, non-rights-base
Access Policyobjects).

In rights-based systems,Access Policyobjectsgrant rights to PrivilegeAttributes. For
each operation in the interface of a secure object, some set of rights isrequired. Callers
must be granted these required rights in order to be allowed to invoke the operatio
Security Service V1.5 Administrator’s Interfaces May 2000 2-119



2

ions
t
ns.

ce’s

s

ough

er

re

ts

s, all

ed

d),
Secure CORBA systems provide aRequiredRights interface, which allows:

• Object interface developers to express the “access control types” of their operat
using standardrights, which are likely to be understood by administrators, withou
requiring administrators to be aware of the detailed semantics of those operatio

• Access-control checking code to retrieve the rights required to invoke an interfa
operations.

A Required Rights object is available as an attribute ofCurrent in every execution
context. EveryRequired Rights object will get and set the same information, so it doe
not matter which instance of theRequiredRights interface is used. The required
rights for all operations of all secured interfaces are assumed to be accessible thr
any instance ofRequiredRights .

Note that required rights are characteristics of interfaces,not of instances. All
instances of an interface, therefore, will always have the same required rights.

Note also that because required rights are defined and retrieved through the
RequiredRights interface, no change to existing object interfaces is required in ord
to assign required rights to their operations.

Rights Families

This specification provides a standard set of rights for use with the
DomainAccessPolicy interface defined later in this section. These rights may not
satisfy all access control requirements. However; to allow for extensibility, rights a
grouped into Rights Families. TheRightsFamily containing the standard rights is
called “corba,” and contains four rights: “g” (interpreted to mean “get”), “ s”
(interpreted to mean “set”), “ m” (interpreted to mean “manage”) and “u” (interpreted
to mean “use”). Implementations may define additional Rights Families.Rights are
always qualified by theRightsFamily to which they belong.

2.4.4.2 The SecurityLevel2::RequiredRights Interface

A Required Rights object can be thought of as a table (an example Required Righ
table appears later in this section). Note that implementations need not manage
required rights on an interface-by-interface basis.Required Rights objects should be
thought of as databases of policy information, in the same way as Interface
Repositories are databases of interface information. Thus in many implementation
calls to theRequiredRights interface will be handled by a single Required Rights
object instance, or by one of a number of replicated instances of a master Requir
Rights object instance.

An operation’s entry in the Required Rights table lists a set of rights, qualified (or
“tagged”) as usual with theRightsFamily . It also specifies aRights Combinator; the
rights combinator defines how entries with more than one required right should be
interpreted. This specification defines two Rights Combinators:AllRights(which
means that all rights in the entry must be granted in order for access to be allowe
andAnyRight(which means that if any right in the entry is granted, access will be
allowed).
2-120 Security Service V1.5 May 2000



2

re

rom

y

Note that the following behaviors of systems conforming to CORBA Security are
unspecified and therefore may be implementation-dependent:

• Assignment of initial required rights to newly created interfaces.

• Inheritance of required rights by newly created derived interfaces.

get_required_rights

This operation retrieves the rights required to execute the operation specified by
operation_name of the interface specified byobj. obj ’s interface will be determined
and used to retrieve required rights. The returned values are a list of rights and a
combinator describing how the list of rights should be interpreted if it contains mo
than one entry.

void get_required_rights(
in Object obj,
in CORBA::Identifier operation_name,
in CORBA::RepositoryId interface_name,
out RightsList rights,
out RightsCombinator rights_combinator

);

Parameters

Return Value

None.

set_required_rights

This operation updates the rights required to execute the operation specified by
operation_name of the interface specified byinterface_name . The caller must
provide a list of rights and a combinator describing how the list of rights should be
interpreted if it contains more than one entry. Note that consistency issues arising f
replication ofRequired Rights objects or distribution of theRequiredRights

obj The object for which required rights are to be returned.

operation_name The name of the operation for which required rights are to be
returned.

interface_name The name of the interface in which the operation described b
operation_name is defined, if this is different from the
interface of which obj is a direct instance. Not all
implementations will require this parameter; consult your
implementation documentation Ifinterface_name is the
empty string, the name of the interface defaults to the most
derived interface specified byobj .

rights The returned list of required rights.

rights_combinator The returned rights combinator.
Security Service V1.5 Administrator’s Interfaces May 2000 2-121



2

o

his
y an

ist
interface must be handled correctly by implementations; after a call to
set_required_rights changes an interface’s required rights, all subsequent calls t
get_required_rights , from any client, must return the updated rights set.

void set_required_rights(
in CORBA::Identifier operation_name,
in CORBA::RepositoryId interface_name,
in RightsList rights,
in RightsCombinator rights_combinator

);

Parameters

Return Value

None.

2.4.4.3 The SecurityAdmin::AccessPolicy Interface

This is the root interface for the various kinds of invocation access control policy. T
interface supports querying of the effective access granted by a set of attributes b
invocation access policy. It inherits theCORBA::Policy interface and has a single
operation,get_effective_rights .

get_effective_rights

This operation returns the current effective rights (of familyRightsFamily ) granted
by this Access Policyobject to the subject possessing all privilege attributes in the l
of attributesattrib_list .

RightsList get_effective_rights(
in AttributeList attrib_list,
in ExtensibleFamily rights_family

);

operation_name The name of the operation for which required rights are to be
updated.

interface_name The name of the interface whose required rights are to be
updated.

rights The desired new list of required rights.

rights_combinator The desired newRightsCombinator.
2-122 Security Service V1.5 May 2000



2

y
t of

ore
s

h

Parameters

Return Value

A list of effective rights that are consistent with theattrib_list and the access policy,
of the family specified byrights_family . If the rights cannot be mapped from one or
more attributes, the attribute is silently ignored.

get_all_effective_rights

This operation returns the current effective rights (for all rights families) granted b
this Access Policy object to the subject possessing all privilege attributes in the lis
attributesattrib_list .

RightsList get_all_effective_rights(
 in AttributeList attrib_list

);

Parameters

Return Value

A list of effective rights that are consistent with theattrib_list and theaccess policy.

Note that this specification does not define how anAccess Policyobject combines
rights granted through different Privilege Attribute entries, in case a subject has m
than one Privilege Attribute to which the Access Policy grants rights. However, thi
call will cause theAccess Policyobject to combine rights granted to all privilege
attributes in the inputAttributeList (using whatever operation it has implemented),
and return the result of the combination.

Access Decisionobjects, and applications that check whether access is permitted
without using anAccess Decisionobject, should use this operation to retrieve rights
granted to subjects.

2.4.4.4 Specific Invocation Access Policies

This specification allows different Invocation Access policies to be provided throug
specialization of theAccessPolicy interface.

attrib_list A list of attributes obtained from one or moreCredentials
using theget_attributes operation.

rights_family The family ofrights to be affected, filtering rights that do not
that matchrights_family .

attrib_list A list of attributes obtained from one or moreCredentials
using theget_attributes operation
Security Service V1.5 Administrator’s Interfaces May 2000 2-123



2

ts
ess

.
ies.

in
ts in
of at

ed

nted
with
hat

s in
y’s
The provider of each specific Invocation Access policy is responsible for defining i
own administrative operations. This specification defines a standard Invocation Acc
policy interface, including administrative operations, presented in the next section
This standard policy may of course be replaced by, or augmented with, other polic

2.4.4.5 The Domain AccessPolicy Object

TheDomain Access Policyobject with theSecurityAdmin::DomainAccessPolicy
interface provides discretionary access policy management semantics. CORBA
implementations with policy requirements, which cannot be met by theDomain Access
Policy abstraction, may choose to implement differentAccess Policyobjects. For
example, they may choose to implement access control policy management using
capabilities.

Domains

This specification defines interfaces for administration of access policy on a doma
basis. Each domain may be assigned an access policy, which is applied to all objec
the domain. Each access-controlled object in a CORBA system must be a member
least one domain.

A Domain Access Policyobject defines the access policy, which grants a set of nam
“subjects” (e.g., users), a specified set of “rights” (e.g.,g, s, m, u) to perform
operations on the “objects” in the domain. A Domain Access Policy can be represe
by a table whose row labels are the names of subjects, and whose cells are filled
the rights granted to the subject named in that row’s label, as in Table 2-1. Note t
the use of the Delegation State is discussed in “Delegation State” on page 2-125.

This Domain Access Policygrants the rights “g” and “s” to Alice and Zeke, and the
right “g” to Bob and Cathy. (The annotation “corba” prefixing the granted rights
indicates which Rights Family, as defined in the previous section, each of the right
the table is drawn from. In this case, all rights are drawn from Domain Access Polic
standard “corba” Rights Family. The delegation state column is described under
“Delegation State” on page 2-125.

Table 2-1 DomainAccessPolicy

Subject Delegation State Granted Rights

alice initiator corba:gs--

bob initiator corba:g---

cathy initiator corba:g---

...

zeke initiator corba:gs--
2-124 Security Service V1.5 May 2000



2

).

ities”

tes;

tor

al
in
Domain Access Policy Use of Privilege Attributes

Administration of principals by individual identity is costly, so the Domain Access
Policy aggregates principals for access control. A common aggregation is called a
“user group.” This specification generalizes the way users are aggregated, using
“Privilege Attributes” (as defined in Section 2.1.4.3, “Access Policies,” on page 2-9
Users may have many kinds of privilege attributes, including groups, roles, and
clearances (note that user access identities, often referred to simply as “user ident
or “userids,” are considered to be a special case of privilege attributes). TheDomain
Access Policyobject uses Privilege Attributes as its subject entries.

This specification does not provide an interface for managing user privilege attribu
an implementation of this specification might provide a “User Privilege Attribute
Table” enumerating the set of users granted each Privilege attribute. An implemen
might provide a user privilege attribute table, shown next.

Given the definitions in this table, we can simplify our Domain Access Policy as
follows (note that, for convenience, eachPrivilegeAttribute entry is annotated in the
table with itsPrivilegeAttribute type).

Delegation State

The Domain Access Policyabstraction allows administrators to grant different rights
when a Privilege attribute is used by a delegate than those granted to the same
Privilege attribute when used by an initiator (note that “initiator” means the princip
issuing the first call in a delegated call chain; that is, the only client in the call cha
that is not also a target object). TheDomain Access Policyshown next illustrates the
use of this feature.

Table 2-2 User Privilege Attributes (not defined by this specification)

Users Privilege Attributes

bob, cathy group:programmers

zeke group:administrators

Table 2-3 Domain Access Policy (with Privilege Attributes)

Privilege Attribute Delegation State Granted Rights

access_id:alice initiator corba:gs--

group:programmers initiator corba:g---

group:administrators initiator corba:gs--

Table 2-4 Domain Access Policy (with Delegate Entry)

Privilege Attribute Delegation State Granted Rights

access_id:alice initiator corba:gs--
Security Service V1.5 Administrator’s Interfaces May 2000 2-125



2

s

es..

of
This Domain Access Policygrants Alice the “g” and “s” rights when she accesses an
object as an initiator, but only the “g” right when a delegate using her identity accesse
the same object.

Domain Access Policy Use of Rights and Rights Families

The rights granted to a Privilege Attribute by aDomain Access Policyentry must each
be “tagged” with the RightsFamily to which they belong. EachDomain Access Policy
entry can grant its row’sPrivilegeAttribute rights from any number of different
Rights Families.

Implementations may define new Rights Families in addition to the standard “corba”
family, though this should be done only if absolutely necessary, since new Rights
Families complicate the administrator’s model of the system.

Access Decision Use of AccessPolicy and RequiredRights

The Access Decisionobject is described in “The Access Decision Object” on
page 2-104. It is used at run-time to perform access control checks.Access Decision
objects rely uponAccess Policyobjects to provide the policy information upon which
their decisions are based.

To complete the example, imagine that we have the following set of object instanc

TheDomain Access Policyobject illustrated next has been updated to include a list
rights of type “other” granted to each of the Privilege attributes..

access_id:alice delegate corba:g---

group:programmers initiator corba:g---

group:administrators initiator corba:gs--

Table 2-5 Interface Instances

Objects Interface

obj_1, obj_8, obj_n c1

obj_2, obj_5 c2

obj_12 c3

Table 2-6 Domain Access Policy (with Required Rights Mapping)

Privilege Attribute Delegation State Granted Rights

access_id:alice initiator corba: gs--
other: -u-m-s

Table 2-4 Domain Access Policy (with Delegate Entry)
2-126 Security Service V1.5 May 2000



2

the
t

olicy.

an

ator,

y

an

tor,

d

tor,
Table 2-7 shows Required Rights for three object interfaces (c1, c2, and c3), using
standard Rights Family “corba” and a second Rights Family, “other,” whose rights se
is assumed to be {g, u, o, m, t, s}.

Using this, we can calculate the effective access granted by this Domain Access P

• alice can execute operations m1 and m2 of objects obj_1, obj_8, and obj_n as
initiator, but may execute only m2 as a delegate.

• alice can execute operations m3 and m4 of objects obj_2, and obj_5 as an initi
but may execute no operations of obj_2 and obj_5 as a delegate.

• alice can execute operations m5 and m6 of object obj_12 as an initiator, but ma
execute no operations as a delegate.

• “programmers” can execute operation m2 of objects obj_1, obj_8, and obj_n as
initiator, but no operations as a delegate.

• “programmers” can execute operation m3 of objects obj_2 and obj_5 as an initia
but no operations as a delegate.

• “administrators” can execute operations m1 and m2 of objects obj_1, obj_8, an
obj_n as an initiator, but no operations as a delegate.

• “administrators” can execute operations m5 and m6 of object obj_12 as an initia
but no operations as a delegate.

2.4.4.6 The SecurityAdmin::DomainAccessPolicy Interface

The Domain Access Policyobject provides operations for managing access policy
through theDomainAccessPolicy interface.

access_id:alice delegate corba: g---
other: ------

group:programmers initiator corba: g---
other: -u----

group:administrators initiator corba: gs--
other: ------

Table 2-7 Required Rights for Interfaces c1, c2, and c3

Required Rights Rights Combinator Operation Interface

corba:s all m1 c1

corba:gs any m2

other:u all m3 c2

other:ms all m4

other: s all m5 c3

corba:gs all m6

Table 2-6 Domain Access Policy (with Required Rights Mapping)
Security Service V1.5 Administrator’s Interfaces May 2000 2-127



2

e

ngle

d to
Each domain manager may have at most oneAccess Policyobject, and therefore at
most oneDomain Access Policy(though an object instance may have more than on
domain manager, and therefore, more than oneDomain Access Policy). The
DomainAccessPolicy interface inherits theAccessPolicy interface and defines
operations to specify which subjects can have which rights as follows.

grant_rights

This operation grants the specifiedrights to the privilege attributepriv_attr in
delegation statedel_state .

Utilities that manage access policy should use this operation to grant rights to a si
privilege attribute.

void grant_rights(
in Attribute priv_attr,
in DelegationState del_state,
in RightsList rights

);

Parameters

Return Value

None.

revoke_rights

This operation revokes the specifiedrights of the privilege attributepriv_attr in
delegation statedel_state .

Utilities that manage access policy should use this operation to revoke rights grante
a single privilege attribute.

void revoke_rights(
in Attribute priv_attr,
in DelegationState del_state,
in RightsList rights

);

priv_attr Privilege attributes to be affected.

del_state Delegation state to be set.

rights The list of rights to be granted.
2-128 Security Service V1.5 May 2000



2

nted

in

nted
Parameters

Return Value

None.

replace_rights

This operation replaces the current rights of the privilege attributepriv_attr in
delegation statedel_state with the rights provided as input.

Utilities that manage access policy should use this operation to replace rights gra
to a single privilege attribute in cases where usinggrant_rights andrevoke_rights
is inappropriate. For example,replace_rights might be used to change an
access_id ’s authorizations to reflect a change in job description (since the change
authorization in this case is related to the duties of the new job rather than to the
current authorizations granted to the user owning theaccess_id ).

void replace_rights(
in Attribute priv_attr,
in DelegationState del_state,
in RightsList rights

);

Parameters

Return Value

None.

get_rights

This operation returns the current rights (of typeRightsList ) of the privilege attribute
priv_attr in delegation statedel_state .

Utilities that manage access policy should use this operation to retrieve rights gra
to an individual privilege attribute.

priv_attr Privilege attributes to be affected.

del_state Delegation state to be set.

rights The list of rights to be revoked.

priv_attr Privilege attributes to be affected.

del_state Delegation state to be set.

rights The list of rights to be replaced.
Security Service V1.5 Administrator’s Interfaces May 2000 2-129



2

ily

nted
RightsList get_rights(
in Attribute priv_attr,
in DelegationState del_state,
in ExtensibleFamily rights_family

);

Parameters

Return Value

A list of rights granted to the specified privilege attribute of the specified rights fam
in the specified delegation state. If the rights cannot be mapped from one or more
attributes, the attribute is silently ignored.

get_all_rights

This operation returns the current rights (for all rights families) of the privilege
attributepriv_attr in delegation statedel_state .

Utilities that manage access policy should use this operation to retrieve rights gra
to an individual privilege attribute.

RightsList get_all_rights(
 in SecAttribute priv_attr,
 in DelegationState del_state

);

Parameters

Return Value

A list of rights granted to the specified privilege attribute in the specified delegation
state.

priv_attr Privilege attributes to which the requested rights are
granted.

del_state Delegation state to be set.

rights_family The family of rights to be affected, filtering rights that
do not that matchrights_family .

priv_attr Privilege attributes to which the requested rights are
granted.

del_state Delegation state to be set.
2-130 Security Service V1.5 May 2000



2

n

or
ich

s
he

in a

r

ion

pes,
2.4.5 Audit Policies

There are two invocation audit policies: 1) theSecClientInvocationAudit policy,
which is used at the client side of an invocation, and 2) the
SecTargetInvocationAudit policy, which is used at the target side. There is also a
application audit policy type.

Audit policy administration interfaces are used to specify the circumstances under
which object invocations and application activities in this domain are audited. As f
access policies, this specification allows different audit policies to be specified, wh
may have different administrative interfaces.

Different audit policies are potentially possible, which allow a great range of option
of what to audit. Some of these are needed to respond to the problem of getting t
useful information, without generating huge quantities of audit information.

Examples of what events could be audited during invocation include:

• Specified operations on objects.

• Failed operations (i.e., those that raise an exception) on specified object types
domain.

• Use of certain operations during certain time intervals (e.g., overnight).

• Access control failures on specified operations.

• Operations done by a specified principal.

• Combinations of these.

Note that many of these events may be related to the business application. For
example, an operation ofupdate_bank_account is a business, rather than system,
operation. However, some events are mainly of interest to a Privilege administrato
(e.g., access failures to systems objects).

Application audit policies may audit similar types of events, though these are often
related to application functions, not object invocations.

2.4.5.1 The SecurityAdmin::AuditPolicy Interface

The AuditPolicy interface can be used to administer both client and target invocat
audit policies.

This standard audit policy is used to specify, for a set of event families and event ty
the selectors to be used to define which events are to be audited.
Security Service V1.5 Administrator’s Interfaces May 2000 2-131



2

t

dit

a

cified
These are related to the selectors used inaudit_needed (of Audit Decision object,
interfaceAuditDecision ) andaudit_write (of Audit Channel object, interface
AuditChannel ), as follows..

Note that audit policy is managed on an audit policy domain basis. Assignment of
initial audit selectors to newly created domains is unspecified and hence may be
implementation-dependent.

The audit policy also specifies an Audit Combinator for each event type. The Audi
Combinator defines how, for a given event type,audit_needed matches its selector
value list against the selectors in an audit policy. This specification defines two Au
Combinators:SecAllSelectors (which means that if all selectors in an audit policy
match the selectors supplied toaudit_needed , audit_needed will return TRUE),
andSecAnySelector (which means that if any selector in the audit policy matches
selector inaudit_needed , audit_needed will return TRUE).

The following operations are available on the Audit Policy object.

set_audit_selectors

This operation defines the selectors to be used to decide whether to audit the spe
event families and types.

void set_audit_selectors(
in CORBA::RepositoryId object_type,
in AuditEventTypeList events,
in SelectorValueList selectors,
in AuditCombinator audit_combinator

);

Table 2-8 Standard Audit Policy

Selector Type Value on audit_needed and
audit_write

Value Administered

InterfaceName interface name CORBA::RepositoryId

ObjectRef object reference none - the policy applies to all objects
in the domain

Operation op_name operation

Initiator credential list security attributes (audit_id and
privileges)

Success
Failure

boolean boolean

Time utc when event occurred time interval during which auditing is
needed

DayOfWeek DayOfTheWeek day of the week on which audit is to
be done
2-132 Security Service V1.5 May 2000



2

n

Parameters

Return Value

None.

clear_audit_selectors

This clears all audit selectors for the specified event families and types.

void clear_audit_selectors(
in CORBA::RepositoryId object_type,
in AuditEventTypeList events

);

Parameters

Return Value

None.

replace_audit_selectors

This replaces the specified selectors.

object_type The type of objects for which an audit policy is being set.
If this is the empty string, the default policy for all object
types is implied.

events Event types are specified as family and type ids. If the
type id is zero (AuditAll ), the selectors apply to all event
types in that family.

selectors The values for the selectors to be set for the specified
events. Selectorsreplaces the old selector list for each of
the specified events. (Selectors for all other events remai
unchanged.)

audit_combinator The value for the combinator to be set for the specified
events.

object_type The type of objects for which an audit policy is being
cleared. If this is the empty string, the default policy for
all object types is implied.

events Event types are specified as family and type ids. If the
type id is zero (AuditAll ), the selectors apply to all event
types in that family.
Security Service V1.5 Administrator’s Interfaces May 2000 2-133



2

ent.
void replace_audit_selectors(
in CORBA::RepositoryId object_type,
in AuditEventTypeList events,
in SelectorValueList selectors
in AuditCombinator audit_combinator

);

Parameters

Return Value

None.

get_audit_selectors

This obtains the current values of the selectors for the specified event family or ev

void get_audit_selectors(
in CORBA::RepositoryId object_type,
in AuditEventType event_type
out SelectorValueList selectors
out AuditCombinator audit_combinator

);

Parameters

object_type The type of objects for which an audit policy is being
replaced. If this is the empty string, the default policy for
all object types is implied.

events Event types are specified as family and type ids. If the
type id is zero (AuditAll ), the selectors apply to all event
types in that family.

selectors The values for the selectors to be set for the specified
events. Selectorsreplaces the old selector list for each of
the specifiedevents. Selectorsfor all eventsnot in the
specified events list are reset to empty lists.

audit_combinator The value for the combinator to be set for the specified
events.

object_type The type of objects for which an audit policy is being
obtained. If this is the empty string, the default policy for
all object types is implied.

eventtype The requested event type.

selectors The list of selector values for the specifiedevent_type .

audit_combinator The audit combinator for the specifiedevent_type .
2-134 Security Service V1.5 May 2000



2

e

e set

een

licy

t of
w:

d
he
Return Value

None.

set_audit_channel

This specifies the identity of the audit channel to be used with this audit policy. Th
actual audit channel object corresponding to this id is provided to the user by the
corresponding Audit Decision object.

void set_audit_channel(
in AuditChannelId audit_channel_id

);

Parameters

Return Value

None.

2.4.6 Secure Invocation and Delegation Policies

These policies affect the way secure communications between client and target ar
up, and then used. There are three policies here:

1. Security::SecClientSecureInvocation policy, which specifies the client policy
in terms of trust in the target’s identity and protection requirements of the
communications between them.

2. Security::SecTargetSecureInvocation policy, which specifies the target policy
in terms of trust in the client’s identity and protection requirements of the
communications between them.

3. Security::SecDelegation policy, which specifies whether credentials are
delegated for use by the target when a security association is established betw
client and target. This is a client side policy.

In all these cases, there is a standard policy interface for administering the policy
options. Unlike access and audit policies, this is not replaceable. The standard po
administration operations allow support of a range of policies.

2.4.6.1 Secure Invocation Policies

These are used to set client and target invocation policies which specify both a se
required secure association options and a set of supported options that control ho

• The security association is made, for example, whether trust between client an
target is established (implying authentication if the client and target are not in t
same identity domain).

audit_channel_id A unique identifier associated with an audit channel.
Security Service V1.5 Administrator’s Interfaces May 2000 2-135



2

rity

t
he
t is

tion
ing

the

are

te
• Messages using that association are protected, for example, the levels of integ
and confidentiality.

The administrator should specify the required association options, but will often no
need to specify the supported options as these default to the ones supported by t
security mechanism used. However, the administrator could choose to restrict wha
supported, and in this case, should specify supported options.

Some implementations may support separate sets of association options for
communications in the request direction and the reply direction (e.g., for an applica
that requires no protection on the request, but confidentiality on the reply). Conform
implementations are not required to support this unidirectional feature. Some
selectable policy options may not be meaningful to set for a certain direction (e.g.,
EstablishTrustInTarget option is not meaningful for a reply).

Both SecClientSecureInvocation andSecTargetSecureInvocation type policy
objects support the same interface, though not all of the selectable policy options
meaningful to both client and target.

Required and Supported Secure Invocation Policy

For both theSecClientSecureInvocation andSecTargetSecureInvocation
policies, a separate set of secure association options may be established to indica
required policy andsupported policy. Therequired policy indicates the options that
an object requires for communications with a peer. Thesupported policy specifies the
options that an object can support if requested by a communicating peer.

The required options indicate the minimum requirements of the object, stronger
protection is not precluded.

2.4.6.2 Secure Association Options

The selectable secure association options (Security::AssociationOptions ) are listed
next with a description of their semantics forrequired policy andsupported policy.

NoProtection

• Required semantics: the object’s minimal protection requirement is unprotected
invocations.

• Supported semantics: the object supports unprotected invocations.

Integrity

• Required semantics: the object requires at least integrity-protected invocations.

• Supported semantics: the object supports integrity-protected invocations.

Confidentiality

• Required semantics: the object requires at least confidentiality-protected
invocations.

• Supported semantics: the object supports confidentiality-protected invocations.
2-136 Security Service V1.5 May 2000



2

es.

ges.

of

ts of

e its

ust

s by

olicy
DetectReplay

• Required semantics: the object requires replay detection on invocation messag

• Supported semantics: the object supports replay detection on invocation messa

DetectMisordering

• Required semantics: the object requires sequence error detection on fragments
invocation messages.

• Supported semantics: the object supports sequence error detection on fragmen
invocation messages.

EstablishTrustInTarget

• Required semantics: On client policy, the client requires the target to authenticat
identity to the client. On target policy, this option is not meaningful.

• Supported semantics: On client policy, the client supports having the target
authenticate its identity to the client. On target policy, the target is prepared to
authenticate its identity to the client.

EstablishTrustInClient

• Required semantics: On client policy, this option is not meaningful. On target
policy, the target requires the client to authenticate its privileges to the target.

• Supported semantics: On client policy, the client is prepared to authenticate its
privileges to the target. On target policy, the target supports having the client
authenticate its privileges to the target.

Note that on an invocation, if both the client and target policies specify that peer tr
is needed, mutual authentication of client and target is generally required.

If the target accepts unauthenticated users as well as authenticated ones, the
EstablishTrustInClient option may be set forsupported policy, but not forrequired
policy. This allows unauthenticated clients to use this target (subject to access
controls); the target can still insist on only authenticated users for certain operation
using access controls.

2.4.6.3 The SecurityAdmin::SecureInvocationPolicy Interface

The SecureInvocationPolicy interface provides the following operations:

set_association_options

This operations of theSecurityAdmin::SecureInvocationPolicy interface
(PolicyTypeSecClientSecureInvocation andSecTargetSecureInvocation ) is
used to set the secure association options for objects in the domain to which the p
applies. Separate options may be set for particular object types by using the
object_type parameter.
Security Service V1.5 Administrator’s Interfaces May 2000 2-137



2

in
ons

ple,

ly a

ion

g

This call allows requesting a different set of association options for communication
the request direction versus the reply direction, although conforming implementati
are not required to support this feature. The “request” and “reply” options sets are
treated as overrides to the “both” options set when evaluating policy for a single
communication direction. Implementations should raise theCORBA::BAD_PARAM
exception if an unsupported direction is requested on this call.

Not all selectable association options are meaningful for every policy set. For exam
EstablishTrustInClient , which is meaningful for theSecTargetSecureInvocation
policy, is not meaningful as a requirement for theSecClientSecureInvocation
policy. Likewise, certain association options do not make sense when applied to on
single direction (e.g.,EstablishTrustInTarget is not meaningful for communication
in the reply direction). An implementation may choose whether to raise an except
or silently ignore requests for invalid association options.

void set_association_options(
in CORBA::RepositoryId object_type,
in RequiresSupports requires_supports,
in CommunicationDirection direction,
in AssociationOptions options

);

Parameters

Return Value

None.

get_association_options

This is used to find what secure association options apply on
SecClientSecureInvocation andSecTargetSecureInvocation policy objects for
the required or supported policy, for the indicated direction, and for the specified
object type.

Implementations should raise theCORBA::BAD_PARAM exception if an
unsupported direction is requested on this call.

object_type The type of objects that the association options apply to.
If this is nil, all object types are implied

requires_supports Indicates whether the operation applies to the required
options or the supported options

direction Indicates whether the options apply to only the request,
only the reply, or to both directions of the invocation.

options Indicates requested secure association options by settin
the corresponding options flags.
2-138 Security Service V1.5 May 2000



2

ain

is
AssociationOptions get_association_options(
in CORBA::RepositoryId object_type,
in RequiresSupports requires_supports,
in CommunicationDirection direction

);

Parameters

Return Values

The association options flags set for this policy.

2.4.6.4 The SecurityAdmin::DelegationPolicy Interface

The Delegation Policyobject, which has theSecurityAdmin::DelegationPolicy
interface, controls which credentials are used when an intermediate object in a ch
invokes another object.

set_delegation_mode

The set_delegation_mode operation specifies which credentials are delegated by
default at an intermediate object in a chain where objects invoke other objects. Th
default can be overridden by the object at run time.

void set_delegation_mode(
in CORBA::RepositoryId object_type,
in DelegationMode mode

);

object_type The type of objects that the association options apply to.
If this is nil, all object types are implied.

requires_supports Indicates whether the operation applies to the required
options or the supported options.

direction Indicates whether the options apply to only the request,
only the reply, or to both directions of the invocation.
Security Service V1.5 Administrator’s Interfaces May 2000 2-139



2

y be
d

r

e

n

Parameters

Return Value

None.

get_delegation_mode

This returns the delegation mode associated with the object.

DelegationMode get_delegation_mode(
in CORBA::RepositoryId object_type

);

Parameters

Return Value

The delegation mode of the object type specified by theobject_type parameter.

2.4.7 Non-repudiation Policy Management

This section defines interfaces for management of non-repudiation policy.

Non-repudiation policies define the following:

• Rules for the generation of evidence, such as the trusted third parties which ma
involved in evidence generation and the roles in which they may be involved an
the duration for which the generated evidence is valid.

• Rules for the verification of evidence, for example, the interval during which a
trusted third party may legitimately declare its key to have been compromised o
revoked.

• Rules for adjudication, for example, which authorities may be used to adjudicat
disputes.

object_type The type of objects to which this delegation policy applies.

mode The delegation mode. Options are:
• SecDelModeNoDelegation: The intermediate’s own credentials

are used for future invocations.
• SecDelModeSimpleDelegation: The initiating principal

credentials are delegated.
• SecDelModeCompositeDelegation: Both the received credentials

and the intermediate object’s own credentials are passed (if the
underlying security mechanism supports this). The requester’s
credentials and the intermediate’s own credentials may be
combined into a single credential, or kept separate, depending o
the underlying security mechanism.

object_type The type of object for which delegation mode is requested.
2-140 Security Service V1.5 May 2000



2

ime

ies
ch

red

ime
me
or

the

he
The non-repudiation policy itself may be used by the adjudicator when resolving a
dispute. For example, the adjudicator might refer to the non-repudiation policy to
determine whether the rules for generation of evidence have been complied with.

For each type of evidence, a policy defines a validity duration and whether trusted t
must be used to generate the evidence.

For each non-repudiation mechanism, a policy defines the set of trusted third part
(“authorities”), which may be used by the mechanism. A policy also defines, for ea
mechanism, the maximum allowable “skew” between the time of generation of
evidence and the time of countersignature by a trusted time service; if the interval
between these two times is larger than the maximum skew, the time is not conside
to be trusted.

For each authority, a policy defines which roles the authority may assume, and a t
offset, relative to evidence generation time, which allows computation of the last ti
at which the authority can legitimately declare its key to have been compromised
revoked. For example, if an authority has a definedlast_revocation_check_offset
of negative one hour, then all revocations taking effect earlier than one hour before
generation of a piece of evidence will render that evidence invalid; no revocation
taking place later than one hour before the generation of the evidence will affect t
evidence’s validity. Note that thelast_revocation_check_offset is inclusive, in the
sense that all revocations occurring up to and including the time defined by
generation_time + offsetare considered effective.

2.4.7.1 Data Types for Non-repudiation Policy Management Interfaces

The following data types are used by the NR policy management operations.

module NRservice {

struct EvidenceDescriptor {
EvidenceType evidence_type,
DurationInMinutes evidence_validity_duration,
boolean must_use_trusted_time

};

typedef sequence <EvidenceDescriptor> EvidenceDescriptorList;

struct AuthorityDescriptor {
string authority_name,
string authority_role,
TimeOffsetInMinutes last_revocation_check_offset
// may be >0 or <0; add this to evid. gen. time to
// get latest time at which mech. will check to see
// if this authority’s key has been revoked.

};

typedef sequence <AuthorityDescriptor> AuthorityDescriptorList;
Security Service V1.5 Administrator’s Interfaces May 2000 2-141



2

struct MechanismDescriptor {
NRMech mech_type,
AuthorityDescriptorList authority_list,
TimeOffsetInMinutes          max_time_skew
// max permissible difference between evid. gen. time
// and time of time service countersignature
// ignored if trusted time not reqd.

};

typedef sequence <MechanismDescriptor> MechanismDescriptorList;
};

2.4.7.2 The NRservice::NRPolicy Interface

The NRPolicy interface has theget_NR_policy_info andset_NR_policy_info
operations, and like all otherPolicy interfaces it derives from theCORBA::Policy
interface.

get_NR_policy_info

Returns information from a non-repudiation policy object.

void get_NR_policy_info(
out ExtensibleFamily NR_policy_id,
out unsigned long policy_version,
out TimeT policy_effective_time,
out TimeT policy_expiry_time,
out EvidenceDescriptorList supported_evidence_types,
out MechanismDescriptorList supported_mechanisms

);

Parameters

Return Value

None.

NR_policy_id The identifier of this non-repudiation policy.

policy_version The version number of this non-repudiation policy.

policy_effective_time The time at which this policy came into effect.

policy_expiry_time The time at which this policy expires.

supported_evidence_types The types of evidence that can be generated under
this policy.

supported_mechanisms The non-repudiation mechanisms which can be used
to generate and verify evidence under this policy.
2-142 Security Service V1.5 May 2000



2

urity

or

s to

to
rms

or's
,

der

er
set_NR_policy_info

Updates non-repudiation policy information.

boolean set_NR_policy_info(
in MechanismDesciptorList requested_mechanisms,
out MechanismDescriptorList actual_mechanisms

);

Parameters

Return Value

2.5 Implementor’s Security Interfaces

This section addresses Security Service replaceability. This section defines the sec
service interfaces that allow different security service implementations to be
substituted, whether or not the generic ORB service interfaces are supported (see
Section 2.5.2, “Implementation-Level Security Object Interfaces,” on page 2-149, f
details).

Appendix E, “Guidelines for a Trustworthy System” offers additional guidance to
implementors of secure ORBs, including a discussion of using protection boundarie
separate components, depending on the level of security required.

The description of security interceptors in Section 2.5.1, “Security Interceptors,” on
page 2-144 (particularly that in Invocation Time Policies), specifies how client and
target side policies and client preferences are used to decide what policy options
enforce. This definition of how the options are used applies whether the ORB confo
to the replaceability options or not. The interceptor facility that this is based on is
defined in the Interceptors chapter of theCommon Object Request Broker: Architecture
and Specification.

None of the interfaces defined in this section affect the application and administrat
views described in Section 2.3, “Application Developer’s Interfaces,” on page 2-71
and Section 2.4, “Administrator’s Interfaces,” on page 2-116.

requested_mechanisms The non-repudiation mechanisms to be supported un
this policy.

actual_mechanisms The non-repudiation mechanisms now supported und
this policy.

TRUE The requested mechanisms were all set.

FALSE If the actual mechanisms returned differ from those
requested.
Security Service V1.5 Implementor’s Security Interfaces May 2000 2-143



2

urity

hen

g of
nial

tors’
ces

le
2.5.1 Security Interceptors

This section describes the interceptors that can be used for implementing the sec
services.

The ORB Services replaceability package requires implementation of two security
interceptors (see the Interceptors chapter of theCommon Object Request Broker:
Architecture and Specification):

• Secure Invocation Interceptor. This is a message-level interceptor. At bind time,
this establishes the security context required to support message protection. W
processing a request, it is a message-level interceptor that uses cryptographic
services to provide message protection and verification. It is able to check and
protect messages (requests and replies) for both integrity and confidentiality.

• Access Control Interceptor.This is a request-level interceptor, which determines
whether an invocation should be permitted. This interceptor also handles auditin
general invocation failures, but not related to denial of access (access-control de
failures are audited within theAccess Decisionobject, which is called by this
interceptor to check access control).

This specification does not define a separate audit interceptor, as the other intercep
implementations or the security service implementations call Audit Service interfa
directly if the events for which they are responsible are to be audited.

The security interceptors implement security functionality by calling the replaceab
security service objects (defined later in this section) as shown in Figure 2-52.

Figure 2-52 Security Functionality Implemented by Security Service Objects

reply request

ORB Core

Client

Control

Client

Invocation

Client
Access
Decision

Vault

Security
Context

Target
Access
Decision

Vault

Security
Context

per request

to set up
security
association

per message

create create

replyrequest

Secure

Interceptors

 Access

Interceptors

Target

Control

Target

Invocation
Secure

Interceptors

 Access

Interceptors
2-144 Security Service V1.5 May 2000



2

of

sary

fore
sage-

ed

n

d
cols

ent

s:

d by

o

at

s

inue
The diagram shows the order in which security interceptors are called. Other
interceptors may also be used during the invocation. The order in which other
interceptors are called in relationship to security interceptors depends on the type
interceptor.

At the client:

• In general, the access control interceptor should be called first (to avoid unneces
processing of the request by other interceptors when permission to perform the
request is denied).

• All request level interceptors (e.g., transaction or replication ones) are called be
the secure invocation interceptor, as the secure invocation interceptor is a mes
level interceptor.

The secure invocation interceptor should ordinarily be the last interceptor invok
(because message protection may encrypt the request, so that the code
implementing a further interceptor will not understand it). Even if only integrity
protection is used, the integrity check will fail if the message has been altered i
any way. Note that data compression and data fragmentation should be applied
before the message-protection interceptor is called.

At the target, analogous rules apply to the interceptors in the reverse order.

2.5.1.1 Invocation Time Policies

Interceptors decide what security policies to enforce on an invocation as follows:

• They call theSecurityLevel2::Current::get_policy operation defined in
Section 2.3, “Application Developer’s Interfaces,” on page 2-71, to find what
policies apply to this client (at the client side) or this target (at the target side).

• At the client side, the security hints in the target object reference are used to fin
what policies apply to the target object and what security mechanisms and proto
are supported. This uses operations on the object reference.

• At the client, the overrides set by the client on the credentials or target object
reference and the security supported by the mechanism in the client’s environm
are taken into account. The Secure Invocation interceptor uses
SecurityLevel2::Current::get_credentials andObject::get_policy .

The Current::get_policy operation may be used to get any of the following policie

• The invocation access policies of the current execution context. These are use
the access control interceptor to check whether access is permitted.

• The invocation audit policy. This is used by interceptors and security services t
check whether to audit events during an invocation.

• The secure invocation policy. This is used by the secure invocation interceptor
bind time. It usesSecureInvocationPolicy::get_association_options as
defined in Section 2.4, “Administrator’s Interfaces. The secure invocation policie
(and hints in the object reference) specify required and supported values. The
interceptor checks that the required values can be supported, and will not cont
Security Service V1.5 Implementor’s Security Interfaces May 2000 2-145



2

y

tor

the
by

e

et

are

ity
y

ich
a
ty

t of

ble
t and
-5).
with the invocation if the client’s requirements are not met. If the target’s
requirements are not met, the invocation may optionally proceed, allowing polic
enforcement at the target.

• The invocation delegation policy. This is used by the secure invocation intercep
at bind time. The interceptor calls
SecureInvocationPolicy::get_delegation_mode to retrieve this information.

2.5.1.2 Secure Invocation Interceptor

At bind time, the secure invocation interceptor establishes a security context, which
client initiating the binding can use to securely invoke the target object designated
the object reference used in establishing the binding. At object invocation time, th
secure invocation interceptor is called to use the (previously established) security
context to protect the message data transmitted from the client to the invoked targ
object.

Please note that the remainder of this section assumes that security interceptors
implemented using the security services replaceability interfaces defined in this
specification; interceptors built for implementations which do not provide the secur
services replaceability interfaces will have similar responsibilities, but will obviousl
make different calls.

It should also be noted that binding takes place implicitly and the exact point at wh
it occurs can vary from one ORB to another. All that one can be certain of is that
binding exists when an invocation of an operation takes place. There is no certain
that the same binding will be used in subsequent invocations. Consequently, the
discussion that follows is about binding states and what must happen when the ac
implicit binding is executed by the ORB. All reference to the term “Bind” should be
interpreted as such.

Bind Time - Client Side

The Secure Invocation interceptor’s client bind time functions are used to:

• Find what security policies apply.

• Establish a security association between client and target. This is done on first
invoking the object, but may be repeated when changes to the security context
occur.

Security policies relevant to this interceptor are the client secure invocation and
delegation policies. To retrieve the invocation policy objects, the Secure Invocation
interceptor calls theget_policy operation.

The interceptor checks if there is already a suitable security context object for this
client’s use of this target. If a suitable context already exists, it is used. If no suita
context exists, the interceptor establishes a security association between the clien
target object (see Section 2.1.3.1, “Establishing Security Associations,” on page 2
2-146 Security Service V1.5 May 2000



2

nd
t
lso

y
of

e

e

e

not

ther
alls

here
ty
est)

sage

curity

e and
The client interceptor callsVault::init_security_context to request the security
features (such as QOP, delegation) required by the client policy, client overrides a
target (as defined in its object reference). TheVault returns a security token to be sen
to the target, and indicates whether a continuation of the exchange is needed. It a
returns a reference to the newly-createdSecurity Context object for this client-target
security association. (The way trust is established depends on policy, the security
technology used, and whether both client and target object are in the same identit
domain. It may involve mutual authentication between the objects and negotiation
mechanisms and/or algorithms.)

The interceptor constructs the association establishment message (including the
security token, which must be transferred to the target to permit it to establish the
target-sideSecurity Context object). The association establishment message may b
constructed in one of two ways:

1. When only the initial security token is needed to establish the association, the
association establishment message may also include the object invocation in th
buffer (i.e., the request) supplied to the interceptor when it was invoked by
send_message . After constructing the association establishment message, the
interceptor invokessend , which results in the ORB sending the message to the
target. After receipt at the target, the association establishment message is
intercepted by the Secure Invocation Interceptor in the target, which at bind tim
calls Vault::accept_security_context to create the targetSecurity Context
object (if needed).

2. When several exchanges are required to establish the security association, the
association establishment message is sent separately, in a message that does
include the object invocation in the buffer (i.e., the request), again usingsend . This
message is intercepted in the target and theVault called to create theSecurity
Context object. However, in this case, the target interceptor must generate ano
security token and send it back to the client interceptor. The client interceptor c
theSecurity Contextobject with acontinue_security_context operation passing
the token returned from the target to check if trust has now been established. T
may be several exchanges of security tokens to complete this. Once the securi
association has been established, the original client object invocation (i.e., requ
is sent in a separate association establishment message.

Details of the transformation to the request and the association establishment mes
formats appear in Section 3.1, “Security Interoperability Protocols,” on page 3-1.

Bind Time - Target Side

The secure invocation interceptor’s target bind functions:

• Find the target secure invocation policies.

• Respond to association establishment messages from the client to establish se
associations.

On receiving an association establishment message, the target secure invocation
interceptor separates it (if needed) into the security token and the request messag
uses theVault (if there is no security context object yet) or the appropriateSecurity
Security Service V1.5 Implementor’s Security Interfaces May 2000 2-147



2

sult

tect

n in

ccess
y.
to

tem

oes
es

ded
Context object to process the security token. As previously described, this may re
in exchanges with the client. Once the association is established, the message
protection function described next is used to reclaim the request message and pro
the reply.

Message Protection (Client and Target Sides)

The Secure Invocation Interceptor is used after bind time for message protection,
providing integrity and/or confidentiality protection of requests and responses,
according to quality of protection requirements specified for this security associatio
the activeSecurity Context object.

The Secure Invocation Interceptor’ssend_message method calls
SecurityContext::protect_message , and itsreceive_message method calls
SecurityContext::reclaim_message , in each case using the appropriateSecurity
Context object.

2.5.1.3 Access Control Interceptor

Bind Time

At bind time, the client access control interceptor usesCurrent::get_policy to get the
SecClientInvocationAccess policy andSecClientInvocationAudit policy. The
target access control interceptor uses theget_policy interface on theCurrent object
to get theSecTargetInvocationAccessPolicy andSecTargetInvocationAudit
policy.

Access Decision Time

The Access Control Interceptor decides whether a request should be allowed or
disallowed.

Access control decisions may be made at the client side, depending on the client a
control policy, and at the target side depending on the target’s access control polic
Target side access controls are the norm; client-side access controls can be used
reduce needless network traffic in distributed ORBs. Note that in some ORBs, sys
integrity considerations may make exclusive reliance on client-side access control
enforcement undesirable.

The Access Control Interceptorclient_invoke and target_invoke methods invoke
the access_allowed method of theAccess Decisionobject, specifying the
appropriate authorization data. The access decision returns a boolean specifying
whether the request should be allowed or disallowed.

The Access Control Interceptor does not know what sort of policy thisAccess Decision
object supports. It may be ACL-based, capability-based, label-based, etc. It also d
not know if theAccess Decisionobject uses the credentials exactly as passed, or tak
the identity from the credentials and uses these to find further valid privileges if nee
for this principal from a trusted source.
2-148 Security Service V1.5 May 2000



2

e

nged

the
e

es

y

ide

ns.

r
y the
f

when
e

The Access Control Interceptor may also check if this invocation attempt should b
audited, by calling theaudit_needed operation on theAudit Decision object; if this
call indicates that the invocation attempt should be audited, the Access Control
Interceptor uses theAuditChannel interface to write the appropriate audit record.

This interceptor does not transform the request. It either passes the request uncha
to continue processing the request, or it aborts the request by returning with an
appropriate exception (e.g.,CORBA::NO_PERMISSION if AccessDecision::
access_allowed returns False).

2.5.2 Implementation-Level Security Object Interfaces

The interfaces described in this section are all provided by the underlying security
infrastructure and the Object Security Service is a client of these interfaces. Since
interfaces are internal to the ORB Security implementation, all these interfaces ar
locality constrained.

This specification defines the following implementation-level security object interfac
to support security service replaceability:

• Vault is used to create a security context for a client/target-object association.

• Security Context objects hold security information about the client-target securit
association and are used to protect messages.

• Credentials object is used for passingCredentials information between the security
infrastructure and the ORB Security Services.

• Access Decisionobjects are used (usually by Access Control Interceptors) to dec
if requests should be allowed or disallowed.

• Audit Decision. objects are used to decide if events are to be audited.

• Audit Channel objects are used to write audit records to the audit trail.

• Principal Authenticator object is used for authenticating a principal.

• NRCredentials object is used for passing non repudiation credentials informatio

While many of these objects have interfaces that are defined in the context of use
interfaces, the Security Replaceability versions of these objects are implemented b
underlying security infrastructure, and the ORB Security Services are the clients o
these interfaces.

2.5.2.1 The Vault Object

The Vault object with theSecurityReplaceable::Vault interface facilitates creating
credentials objects and establishing security contexts between clients and targets
they are in different trust domains. Authentication is required to establish trust. Th
Vault is a locality constrained object. Implementations of theVault are responsible for
calling AuditDecision::audit_needed to determine whether the audit policy
requires auditing of successful and/or failed access control checks, and for calling
AuditChannel::audit_write whenever audit is needed.
Security Service V1.5 Implementor’s Security Interfaces May 2000 2-149



2

e
tem.
2.5.2.2 The SecurityReplaceable::Vault Interface

The Vault operations are described below. Note that if an invocation of aVault
operation results in an incompleteSecurity Context (i.e., one which requires continued
dialogue to complete), the continuation of the dialogue is accomplished using the
interface of the incompleteSecurity Context object rather than theVault interface.

acquire_credentials

This operation is called to authenticate the principal and optionally request privileg
attributes that the principal requires during its capsule specific session with the sys
It creates a capsule specificCredentials object including the required attributes.

AuthenticationStatus acquire_credentials(
in AuthenticationMethod method,
in MechanismType mechanism,
in SecurityName security_name,
in Opaque auth_data,
in AttributeList privileges,
out Credentials creds,
out Opaque continuation_data,
out Opaque auth_specific_data

);

Parameters

method Contains the identifier of the authentication method used

mechanism Contains the security mechanism with which to create the
Credentials.

security_name Contains the principal’s identification information (e.g., login
name).

auth_data Contains the principal’s authentication information such as
password or long term key.

privileges Contains the privilege attributes requested.

creds Contains thelocality constrained object reference of the
newly createdCredentials object. It is usable and placed on
theCurrent object’sown_credentials list only if the
return value is ‘SecAuthSuccess.’

auth_specific_data Information specific to the particular authentication service
used

continuation_data If the return parameter from the authenticate operation is
‘SecAuthContinue,’ then this parameter contains challenge
information for authentication continuation.
2-150 Security Service V1.5 May 2000



2

ot
type
Return Value

The return parameter is used to specify the result of the operation.

continue_credentials_acquistion

This continues the authentication process for authentication procedures that cann
complete in a single operation. An example of this might be a challenge/response
of authentication procedure.

AuthenticationStatus continue_credentials_acquisition(
in Opaque response_data,
in Credentials creds,
out Opaque continuation_data,
out Opaque auth_specific_data

);

Parameters

‘SecAuthSuccess’ Indicates that the object reference of the newly created
initialized credentials object is available in thecreds
parameter.

‘SecAuthFailure’ Indicates that authentication was in some way inconsistent
or erroneous, and therefore credentials have not been
created.

‘SecAuthContinue’ Indicates that the authentication procedure uses a
challenge/response mechanism. Thecredscontains the
object reference of a partially initializedCredentials
object. Thecontinuation_data indicates details of the
challenge.

‘SecAuthExpired’ Indicates that the authentication data contained some
information, the validity of which had expired (e.g., expired
password).Credentials have therefore not been created.

response_data Contains the response data to the challenge.

creds Contains the reference of the partially initialized Credentials
object. The Credentials object is fully initialized only when
return parameter is ‘SecAuthSuccess.’

continuation_data If the return parameter from the continue_authentication
operation is ‘SecAuthContinue,’ then this parameter
contains challenge information for authentication
continuation.

auth_specific_data Contains information specific to the particular authentication
service used.
Security Service V1.5 Implementor’s Security Interfaces May 2000 2-151



2

urity
Return Value

The return parameter is used to specify the result of the operation.

init_security_context

This operation is used by the association interceptor (or the ORB if separate
interceptors are not implemented) at the client to initiate the establishment of a sec
association with the target. This operation creates theClientSecurityContext object
that represents the client’s view of the shared security context.

AssociationStatus init_security_context(
in Credentials creds,
in SecurityName target_security_name,
in Object target,
in DelegationMode delegation_mode,
in OptionsDirectionPairList association_options,
in MechanismType mechanism,
in Opaque mech_data,
in Opaque chan_bindings,
out OpaqueBuffer security_token,
out ClientSecurityContext security_context

);

‘SecAuthSuccess’ Indicates that theCredentials object whose reference was
identified by thecredsparameter is now fully initialized.

‘SecAuthFailure’ Indicates that the response data was in some way
inconsistent or erroneous, and that therefore credentials
have not been created.

‘SecAuthContinue’ Indicates that the authentication procedure requires a
further challenge/response. TheCredentials object whose
reference was identified in thecredsparameter is still only
partially initialized. Thecontinuation_data indicates
details of the next challenge.

‘SecAuthExpired’ Indicates that the authentication data contained some
information whose validity had expired (e.g., expired
password). TheCredentials object referred to by thecreds
parameter is not valid.
2-152 Security Service V1.5 May 2000



2

s
e

s
s

ed
Parameters

Return Value

The return value is used to specify the result of the operation.

creds The credentials to be used to establish the security
association.

target_security_name The security name of the target as set in its object
reference.

target The target object reference.

delegation_mode The mode of delegation to employ. The value is obtained
by combining client policy and application preferences as
described in Invocation Time Policies under
Section 2.5.1, “Security Interceptors,” on page 2-144.

association_options A sequence of one or more pairs of secure association
options and direction. The options include such things a
required peer trust and message protection. Normally, on
pair will be specified, for the “both” direction.
Implementations that support separate association option
for requests and replies may supply an additional option
set for each direction supported. These values are
obtained from a combination of the client’s security
policy, the hints in the target object reference, and any
requests made by the application.

mechanism Normally NULL , meaning use default mechanism for
security associations. Otherwise, it contains the security
mechanism(s) requested. (These may have been obtain
from the target object reference.)

mech_data Any data specific to the chosen mechanism, as found in
the target object reference

chan_binding Normally NULL (zero length). If present, they are
channel bindings as in GSS-API.

security_token The token to be transmitted to the target to establish the
security association. Note that this may take several
exchanges, but operations required at the client to
continue the establishment of the association are on the
Security Context object

security_context The initialized security context.
Security Service V1.5 Implementor’s Security Interfaces May 2000 2-153



2

pt a
the
ity

y
o

.

d

accept_security_context

This operation is used by the association interceptor (or ORB) at the target to acce
request from the client to establish a security association. This operation creates
ServerSecurityContext object that represents the target’s view of the shared secur
context.

AssociationStatus accept_security_context(
in CredentialsList creds_list,
in Opaque chan_bindings,
in OpaqueBuffer in_token,
out OpaqueBuffer out_token,
out ServerSecurityContext security_context

);

Parameters

SecAssocSuccess Indicates that the security context has been successfull
created and that no further interactions with it are needed t
establish the security association.

SecAssocFailure Indicates that there was some error, which prevents
establishment of the association.

SecAssocContinue Indicates that the association procedure needs more
exchanges.

creds_list The credentials of the target. Note that this may be the
credentials of the trust domain, not the individual object.

chan_bindings If present, the channel bindings are as in GSS-API.

in_token The security token transmitted from the client.

out_token If establishment of the security association is not yet
complete, this contains the security token to be
transmitted to the client to continue the security dialogue
Note that any further operations needed to complete the
security association are on the security context object.

security_context TheSecurity Context object at the target which
represents the shared security context between client an
target.
2-154 Security Service V1.5 May 2000



2

e

ions

ully

has
Return Value

get_supported_mechs

This operation returns the mechanism types supported by this Vault object and th
association options these support.

MechandOptionsList get_supported_mechs ();

Parameters

None.

Return Value

The list of mechanism types supported by this Vault object and the association opt
they support.

get_supported_authen_methods

This operation returns the authentication methods that are valid for a particular
mechanism that the Vault object supports. This operation raises a
CORBA::BAD_PARAM exception if the vault does not support the mechanism.

AuthenticationMethodList get_supported_authen_methods(
in MechanismType mechanism

);

Parameters

Return Value

The list of authentication methods supported by this Vault object for the particular
mechanism.

SecAssocSuccess Indicates that the security context has been successf
created and no further interactions with it are needed to
establish the security association.

SecAssocFailure Indicates that there was some error that prevents
establishment of the association.

SecAssocContinue The first stage of establishing the security association
been successful, but it is not complete. Theout_token
contains the token to be returned to continue it.

mechanism Contains the mechanism for which the authentication methods
are valid.
Security Service V1.5 Implementor’s Security Interfaces May 2000 2-155



2

s a

urity

/or

ns

1

he
2.5.2.3 The Security Context Object

A Security Context object with theSecurityReplaceable::SecurityContext
interface represents the shared security context between a client and a target. It i
locality constrained object. It is used as follows:

• By the security association interceptors to complete the establishment of a sec
association between client and target after theVault has initiated this.

• By the message protection interceptors in protecting messages for integrity and
confidentiality.

• In response to a target object’s request toCurrent for privileges and other
information (sent from the client) about the initiating principal.

• In response to a target object’s request toCurrent to supply one (or more)
credentials object(s) from incoming information about principal(s).

• To check if the security context is valid, and if not, try and refresh it.

The Security Context object is a stateful object that goes through state transitions
based on the result of calls on its operations. It also may go through state transitio
based on environmental concerns such as an amount of time that has expired. An
implementation of a Security Context must model the following states:

The state transitions are modeled by the following diagram

Initial Initial state of any Security Context.

Continued The Security Context is in process of negotiation and not
yet established. This state corresponds to SECIOP state S
and S3.

ClientEstablished The Security Context is established on the client side. This
means evidence from the target may not need to be
processed before messages can be protected and sent to t
target side. This state corresponds to SECIOP state S2.

Established The Security Context is fully established. It is able to
process all messages. This state corresponds to SECIOP
state S3.

EstablishExpired The negotiation has expired.

Expired The Security Context has expired.

Invalid The Security Context is invalid.
2-156 Security Service V1.5 May 2000



2

at
fresh
Figure 2-53 Security Context State Transition Diagram

An implementation of a Security Context that transitions into theClientEstablished
state, which must only be on the client side of the context, must allow successful
processing ofprotect_message operations.

From any state, a context may enter theExpiredor Invalid (not pictured) states due to
environmental events or bad operations. Contexts in theClientEstablished,
Established, andExpiredstate may be refreshed, although, it is not a requirement th
refresh be successful for all those states (i.e. some mechanisms may only allow re
of unexpired contexts). If refresh is not supported for this context, then the
supports_refresh attribute must be false.

2.5.2.4 The SecurityReplaceable::SecurityContext Interface

The SecurityReplaceable::SecurityContext interface has the following attributes
and operations:

context_type

The context_type readonly attribute returns the orientation type of the security
association. It has the following definition:

Initial

Continued
Client
Established

Established

Establish
Expired

Expired

Invalid
init_security_context
accept_security_context

init_security_context

continue_security_context

discard_security_context

Operation Transition

Environmental Transition

refresh_security_context

ExpiredEstablishedClient
EstablishedContinued
Security Service V1.5 Implementor’s Security Interfaces May 2000 2-157



2

t and

o

ide

le
readonly attribute SecurityContextType context_type;

Return Value

context_state

The context_state readonly attribute returns state of the security association. A
security context goes through a number of different states during the establishmen
use of the secure association. It has the following definition:

readonly attribute SecurityContextState context_state;

Return Value

mechanism

The mechanismreadonly attribute returns security mechanism used by security
association. It has the following definition:

readonly attribute MechanismType mechanism;

Return Value

The value of the mechanism that created the security context.

‘SecClientSecurityContext’ This security context has a client orientation. It was
created by theVault::init_security_context
operation.

‘SecServerSecurityContext’ This security context has a server orientation. It was
created by theVault::accept_security_context
operation.

‘SecContextInitialized’ This security context has been initialized.

‘SecContextContinued’ This security context is awaiting more negotiation t
become established.

‘SecContextClientEstablished’ This security context is established on the client s
and the client has the ability to send protected
messages to the server side. However, the context is
still waiting for the server side to complete the
establishment of the association.

‘SecContextEstablished’ This security context is fully established.

‘SecContextEstablishExpired’ This security context has expired during
establishment negotiation.

‘SecContextExpired’ This security context has expired. It may be possib
to refresh it.

‘SecContextInvalid’ This security context is invalid. It cannot be used or
refreshed.
2-158 Security Service V1.5 May 2000



2

the

of
the
supports_refresh

The supports_refresh readonly attribute returns whether the mechanism and the
implementation of thisSecurityReplaceable::SecurityContext object can support
refreshment of the security context.

readonly attribute boolean supports_refresh;

Return Value

chan_binding

Thechan_binding readonly attribute returns channel binding that was used when
security context was created. It has the following definition:

readonly attribute Opaque chan_binding;

Return Value

The channel binding that was used when the security context was created.

received_credentials

Thereceived_credentials readonly attribute returns theReceivedCredentials that
are received from the invoker.

readonly attribute ReceivedCredentials received_credentials;

Return Value

Object reference to received credentials.

continue_security_context

This operation is invoked by the association interceptor to continue establishment
the security association. It can be called by either the client or target interceptor on
local security context object.

AssociationStatus continue_security_context(
in OpaqueBuffer in_token,
out OpaqueBuffer out_token

);

FALSE Refresh is not supported.

TRUE Refresh is supported.
Security Service V1.5 Implementor’s Security Interfaces May 2000 2-159



2

ge, or

ssary.

d.
Parameters

Return Value

protect_message

The protect_message operation of theSecurity Context object provides the means
whereby the client message protection interceptor may protect the request messa
the target interceptor may protect the response message for integrity and/or
confidentiality according to the Quality of Protection required.

void protect_message(
in OpaqueBuffer message,
in QOP qop,
out OpaqueBuffer text_buffer,
out OpaqueBuffer token

);

Parameters

Return Value

None.

reclaim_message

The reclaim_message operation on theSecurityContext object provides the means
whereby a protected message may be checked for integrity and decrypted if nece

in_token The security token generated by the other one of the client-target
pair and sent to thisSecurity Context object to be used to
continue the dialogue between client and target to establish the
security association.

out_token If required, a further security token to be returned to the other
Security Context object to continue the dialogue.

SecAssocSuccess The security association has been successfully establishe

SecAssocFailure The attempt to establish a security association has failed.

SecAssocContinue The context is only partially initialized and further
operations are required to complete authentication.

message The message for which protection is required.

qop Required message protection options.

text_buffer The protected message, optionally encrypted.

token The integrity checksum, if any.
2-160 Security Service V1.5 May 2000



2

a
ite
boolean reclaim_message(
in OpaqueBuffer text_buffer,
in OpaqueBuffer token,
out QOP qop,
out OpaqueBuffer message

);

Parameters

Return Value

If the reclaim_message operation returns a value ofFALSE, then the message has
failed its integrity check. IfTRUE, the integrity of the message can be assured.

is_valid

The is_valid operation of theSecurity Context object allows a caller to determine
whether the context is currently valid.

boolean is_valid(
out UtcT expiry_time

);

Parameters

Return Value

refresh_security_context

This operation may extend the useful lifetime of theSecurityContext. It takes one
input argument of data specific to the mechanism that may be needed to complete
refresh of the context. The output token should be given as evidence to the oppos
side of the refresh. Therefresh_security_context operation may be called on both
valid and expired contexts.

text_buffer The message for which the check is required and optionally
the message to be decrypted.

token The integrity checksum, if any. Will typically be zero length
if QOP indicates that confidentiality was applied.

qop The quality of protection that was applied to the protected
message.

message The unprotected message, decrypted if required.

expiry_time The time at which this context is no longer valid.

FALSE The context is no longer valid.

TRUE The context is still valid.
Security Service V1.5 Implementor’s Security Interfaces May 2000 2-161



2

e

not

e

Note – Refreshing a security context may possibly reopen the context for possible
renegotiation of the security context. Implementations should check the state of th
security context to determine if calls tocontinue_security_context may be needed
to complete refreshment of the security context.

boolean refresh_security_context (
in Opaque refresh_data,
out OpaqueBuffer out_token

);

Parameters

Return Value

process_refresh_token

This operation may extend the useful lifetime of theSecurityContext based on a token
from the opposite side of the shared association. Therefresh_security_context
operation may be called on both valid and expired contexts provided that they have
yet been destroyed or discarded.

Note – Refreshing a security context may possibly reopen the context for possible
renegotiation of the security context. Implementations should check the state of th
security context to determine if calls tocontinue_security_context may be needed
to complete refreshment of the security context.

boolean process_refresh_token (
in OpaqueBuffer refresh_token,

);

refresh_data Data specific to the mechanism that may be needed to
refresh the security context.

out_token Evidence of the refresh request that is to be delivered to the
opposite side of the context.

FALSE The context has not been successfully refreshed. The
parameterout_token does not contain a valid value.

TRUE The context has been successfully refreshed, or it has been
opened up for renegotiation that may need subsequent calls
to continue_security_context . The parameter
out_token contains the evidence token.
2-162 Security Service V1.5 May 2000



2

y be
Parameters

Return Value

discard_security_context

This operation is invoked by the association interceptor to discard a security
association. It takes one input argument of data specific to the mechanism that ma
needed to discard the context. The output token may be given as evidence to the
opposite side of the discard.

boolean discard_security_context (
in Opaque discard_data,
out OpaqueBuffer out_token

);

Parameters

Return Value

process_discard_token

This operation may discard theSecurityContext based on a token from the opposite
side of the shared association. Theprocess_discard_token operation may be called
on both valid and expired contexts.

boolean process_discard_token (
in OpaqueBuffer discard_token,

);

refresh_token Evidence token supporting refresh of this context.

FALSE The context has not been successfully refreshed.

TRUE The context has been successfully refreshed, or it has been
opened up for renegotiation that may need subsequent calls
to continue_security_context .

refresh_data Data specific to the mechanism that may be needed to
discard the security context.

out_token Evidence of the discard to be delivered to the opposite side.

FALSE The context has not been discarded. The parameter
out_token does not have a valid value.

TRUE The context has been discarded. The parameterout_token
contains the evidence token.
Security Service V1.5 Implementor’s Security Interfaces May 2000 2-163



2

t
tes:

s

he

to
ty
Parameters

Return Value

2.5.2.5 The Client Security Context Object

A Client Security Context object with the
SecurityReplaceable::ClientSecurityContext interface represents the client’s
view of a shared security context between a client and a target. It implements the
SecurityReplaceable::SecurityContext interface by inheritance and is alocality
constrained object.

2.5.2.6 The SecurityReplaceable::ClientSecurityContext Interface

The SecurityReplaceable::ClientSecurityContext interface extends the
SecurityReplaceable::SecurityContext interface with attributes that concern clien
side initialization arguments and target side information. It has the following attribu

association_options_used

The asscociation_options_used readonly attribute returns the association option
used and to create the security context withVault::init_security_context . These
options may also have been negotiated during set up to something other than the
association options supplied toVault::init_security_context . Nonetheless, it is the
current state of the security context that is reflected in this attribute.

readonly attribute AssociationOptions association_options_used;

Return Value

The association options that reflects the current state of the security context.

delegation_mode

The delegationreadonly attribute returns the delegation mode used and to create t
security context withVault::init_security_context . This option may have been
negotiated during set up to something other than the association options supplied
Vault::init_security_context . Nonetheless, it is the delegation mode of the securi
context that is reflected in this attribute.

discard_token Evidence token supporting discard of this context.

FALSE The context has not been discarded. Discard token may be
invalid for context.

TRUE The context has been successfully discarded.
2-164 Security Service V1.5 May 2000



2

te

at
readonly attribute Security::DelegationMode delegation_mode;

Return Value

The delegation mode that reflects the current state of the security context.

mech_data

The mech_data readonly attribute returns the value of themech_data argument
used to create the security context withVault::init_security_context .

readonly attribute Opaque mech_data;

Return Value

The mechanism data used to create the context.

client_credentials

The client_credentials readonly attribute returns the credentials used and to crea
the security context withVault::init_security_context .

readonly attribute Credential client_credentials;

Return Value

The credentials used to create the security context.

server_options_supported

The server_options_supported readonly attribute returns the association options
that the server side of the security context supported.

readonly attribute AssociationOptions server_options_supported;

Return Value

The association options that the server supports.

server_options_required

Theserver_options_required readonly attribute returns the association options th
the server side of the security context required.

readonly attribute AssociationOptions server_options_required;

Return Value

The association options that the server requires.

server_security_name

The server_security_name readonly attribute returns the security name that the
server side of the security context represents.
Security Service V1.5 Implementor’s Security Interfaces May 2000 2-165



2

s

ity
readonly attribute Opaque server_security_name;

Return Value

The security name of the target side.

2.5.2.7 The Server Security Context Object

A Server Security Contextobject with the
SecurityReplaceable::ServerSecurityContext interface represents the target’s
view of a shared security context between a client and a target. It implements the
SecurityReplaceable::SecurityContext interface by inheritance and is alocality
constrained object.

2.5.2.8 The SecurityReplaceable::ServerSecurityContext Interface

The SecurityReplaceable::ServerSecurityContext interface extends the
SecurityReplaceable::SecurityContext interface with attributes that concern
target side initialization arguments and target side information. It has the following
attributes:

association_options_used

The asscociation_options_used readonly attribute returns the association option
that have been negotiated during set up viaVault::accept_security_context .

readonly attribute AssociationOptions association_options_used;

Return Value

The association options that reflects the current state of the security context.

delegation_mode

Thedelegationreadonly attribute returns the delegation mode in effect for this secur
context.

readonly attribute Security::DelegationMode delegation_mode;

Return Value

The delegation mode that reflects the current state of the security context.

server_credentials

The server_credentials readonly attribute returns the server credentials selected
from the list of credentials used to create the security context with
Vault::accept_security_context .
2-166 Security Service V1.5 May 2000



2

at

text.

ss
s,
readonly attribute Credentials server_credentials;

Return Value

The credentials used to create the security context.

server_options_supported

The server_options_supported readonly attribute returns the association options
that this server side of the security context supported.

readonly attribute AssociationOptions server_options_supported;

Return Value

The association options that this server supported for negotiation of this security
context.

server_options_required

Theserver_options_required readonly attribute returns the association options th
this server side of the security context required.

readonly attribute AssociationOptions server_options_required;

Return Value

The association options that this server required for negotiation of this security con

server_security_name

The server_security_name readonly attribute returns the security name for which
this server used to accept and negotiate the security context.

readonly attribute Opaque server_security_name;

Return Value

The target security name of the security context.

2.5.2.9 The Credentials Object

The Credentials object with theSecurityLevel2::Credentials interface, as defined
in Section 2.3.4, “The Credentials Object,” on page 2-78, is used to passCredentials
information between the underlying security mechanisms and the ORB Security
Services.

2.5.2.10 The Access Decision Object

The Access Decisionobject is responsible for determining whether the specified
credentials allow this operation to be performed on this target object. It uses acce
control attributes for the target object to determine whether the principal’s privilege
Security Service V1.5 Implementor’s Security Interfaces May 2000 2-167



2

it

tors

a

d by

inor
ugh
tion
obtained from theSecurity Context are sufficient to meet the access criteria for the
requested operation.Access Decisionobjects have the
SecurityLevel2::AccessDecision Interface as described in Section 2.3.10.2, “The
Access Decision Object,” on page 2-104.

2.5.2.11 Audit Objects

There are two types of audit objects:

1. TheAudit Decision object, which has theSecurityLevel2::AuditDecision
interface, is used to find out whether an action needs to be audited. Similar aud
decision objects are used for all audit policies.

2. TheAudit Channel objects, which has theSecurityLevel2::AuditChannel
interface, is used by many of the implementation components (such as intercep
and security objects) and also used by applications to write audit records.

The interfaces are described in Section 2.3.8, “Security Audit,” on page 2-100.

2.5.2.12 Principal Authentication

The Principal Authenticator object with the
SecurityLevel2::PrincipalAuthenticator interface, defined in Section 2.3.3,
“Authentication of Principals,” on page 2-73, provides the facility for authenticating
principal. It may also be used by implementation security objects, specifically the
Vault .

2.5.2.13 Non-repudiation

The Non-repudiation services are accessible through theNRservice::NRCredentials
interface. Its functionality and operations are defined in Section 2.3.12, “Non-
repudiation,” on page 2-108.

2.5.3 Replaceable Security Services

It is possible to replace some security services independently of others.

2.5.3.1 Replacing Authentication and Security Association Services

Replacement of the authentication, security context management, and message
protection services underlying a secure ORB implementation can be accomplishe
replacing thePrincipal Authenticator , Vault, Credentials, andSecurity Context
objects with implementations using the new underlying technology.

Note that if theVault uses GSS-API to link to external security services, it may be
substantially security technology independent, and so may require no changes or m
changes in order to accommodate a new underlying authentication technology (tho
it may also have to use technology independent interfaces for principal authentica
in some circumstances, as this is not always hidden under GSS-API).
2-168 Security Service V1.5 May 2000



2

ss
e

licy

ted

he

.

ted

sing
tric

and
ther
The Vault is replaced by changing the version in the environment.

2.5.3.2 Replacing Access Control Policies

Access control policies can be changed by replacing theAccess PolicyandAccess
Decisionobjects, which define and enforce access control policies (for example,
substituting anotherAccess Policyobject forDomainAccessPolicy).

Applications may also change their access control policies. If the application acce
policy object(s) is similar to the invocation access policy object(s), then they can b
replaced in a similar way.

2.5.3.3 Replacing Audit Services

Audit policies may be replaced, for example, to support certain types of invocation
audit policy not supported by the standard audit policy objects. In this case, the po
objects are replaced in a similar way to the access policy objects.

Also, Audit Channel objects may be replaced to change how audit records are rou
to a collection point or filtered.

TheAudit Channel object used for object system auditing is replaced by replacing t
Audit Channel object in the environment. OtherAudit Channel objects may be
replaced by associating a different channel object with the appropriate audit policy

Application auditing objects can be replaced by the application.

2.5.3.4 Replacing Non-repudiation Services

The Non-repudiation Service is a stand-alone replaceable security service associa
with NRCredentials andNRPolicy objects. Different NR services may use different
mechanisms and support different policies. For example, it may be that a service u
symmetric encipherment techniques may be replaced by a service using asymme
encipherment techniques.

The same credentials and authentication method may be used for non-repudiation
for other secure invocations, so when replacing either of these, the effect on the o
should be considered.

2.5.3.5 Other Replaceability

No other replaceability points are defined as part of this specification. However,
individual implementations may permit replacement of other security services or
technologies.

2.5.3.6 Linking to External Security Services

The security service interfaces specified in this section may encapsulate calls to
external security services via APIs.
Security Service V1.5 Implementor’s Security Interfaces May 2000 2-169



2

s on

s Key

in

ls
ent.

to

pen
The external services used may include:

• Authentication Services, to authenticate principals.

• Privilege (Attribute) Services, for selecting and certifying privilege attributes for
authenticated principals (if access control can be based on privileges as well a
individual identity).

• Security Association Services, for establishing secure associations between
applications. These services may themselves use other security services such a
Distribution Services (if secret keys are used), a Certification Authority for
certifying public keys, and Interdomain Services for handling communications
between security policy domains.

• Audit (and Event) Services.

• Cryptographic Support Facilities, to perform cryptographic operations (perhaps
an algorithm-independent way).

This specification does not mandate which interfaces are used to access external
security services, but notes the following possibilities:

• The GSS-API is used for security associations and for the majority of Credentia
and Security Context operations, as this allows easy security service replacem
With this in mind, several interfaces in this specification have been designed to
allow easy mapping to GSS-API functions, and the Credentials and Security
Context objects are consistent with GSS-API credentials and contexts.

• IDUP GSS-API may be used for independent data unit protection and evidence
generation and verification.

• Cryptographic operations performed by a Cryptographic Support Facility (CSF)
ease replacement of cryptographic algorithms. No specific interface is
recommended for this yet, as such interfaces are being actively discussed in X/O
and other international bodies, and standards are not yet stable.
2-170 Security Service V1.5 May 2000



ProtocolsandMechanisms 3
ity
Contents

This chapter contains the following topics.

3.1 Security Interoperability Protocols

3.1.1 Introduction

This section specifies a model for secure interoperability between ORBs which
conform to the CORBA 2 interoperability specification and employ a common secur
technology.

The interoperability model also describes other interoperability cases, such as the
effect on interoperability of crossing security policy domains. However, detailed
definitions of these are not given in this specification.

Topic Page

“Security Interoperability Protocols” 3-1

“Secure Inter-ORB Protocol (SECIOP)” 3-34

“The SECIOP Hosted CSI Protocols” 3-54

“SPKM Protocol” 3-61

“GSS Kerberos Protocol” 3-64

“CSI-ECMA Protocol” 3-67

“Integrating SSL with CORBA Security” 3-103

“DCE-CIOP with Security” 3-105
Security Service V1.5 May 2000 3-1



3

his

rity

r
is

dent
ls
er,

ity
ge

ecify
It then defines the extensions required to the interoperability protocol for security. T
includes:

• specification of tags in the CORBA 2 Interoperable Object Reference (IOR ) so this
can carry information about the security policy for the target object and the secu
technology which can be used to communicate securely with it.

• a security interoperability protocol to support the establishment of a security
association between client and target object and the protection of CORBA 2
General Inter-ORB Protocol (GIOP) messages between them for integrity and/o
confidentiality. This is independent of the security technology used to provide th
protection.

• security when using the DCE-CIOP protocol.

As the security information needed by a security mechanism is generally indepen
of which ORB interoperability protocol is used, other Environment-Specific Protoco
(ESIOPs) may support security in a similar way to that described for GIOP. Howev
the proposal only addresses DCE-CIOP, which supports only DCE security.

The security protocol specified does not define details of the contents of the secur
tokens exchanged to establish a security association, the integrity seals for messa
integrity, or the details of encryption used for confidentiality of messages, as these
depend on the particular security mechanism used. This specification does not sp
mechanisms.

3.1.2 Interoperability Model

This section describes secure interoperability when:

• the ORBs share a common interoperability protocol,

• consistent security policies are in force at the client and target objects, and

• the same security mechanism is used.

All other options build from this.
3-2 Security Service V1.5 May 2000



3

is
e

een
nd

iated
rity
ate

:

ity.

it.
d

The model for secure interoperability is shown in the following diagram.

Figure 3-1 Model for Secure Interoperability

When the target object registers its object reference, this contains extra security
information to assist clients in communicating securely with it.

The protocol between client and target object on object invocations is as follows:

• If there is not already a security association between the client and target, one
established by transmitting security token(s) between them (transparently to th
application).

• Requests and responses between client and target are protected in transit betw
them. Protection includes not only ensuring individual messages are inviolate a
private, but that message streams are as well.

3.1.2.1 Security Information in the Object Reference

When an object is created in a secure object system, the security attributes assoc
with it depend on the security policies for its domain and object type and the secu
technology available. A client needs to know some of this information to communic
securely with this object in a way the object will accept. So the object reference
transferred between two interoperating systems includes the following information

• A security name or names for the target so the client can authenticate its ident

• Any security policy attributes of the target relevant to a client wishing to invoke
This covers policies such as the required quality of protection for messages an
whether the target requires authentication of the clients identity and supports
authentication of its identity.

Client

request request

ORB Core

Target
Object

ORB

Services
Security

ORB

Services
Security

security token at association setup

protected message

reply reply
Security Service V1.5 Security Interoperability Protocols May 2000 3-3



3

n
use

the

used.

ens

een
ages

le,

the

rget

read

wever,
t be
e

ata
rame.
),
col

not
• Identification of the security technology used for secure communication betwee
objects this target supports and any associated attributes. This allow the client to
the right security mechanism and cryptographic algorithms to communicate with
target.

3.1.2.2 Establishing a Security Association

The contents of the security tokens exchanged depend on the security mechanism

A particular security mechanism may itself have options on how many security tok
are used. The minimum is aninitial contexttoken (a term used in GSS-API), sent from
the client to the target object to establish the security association. This typically
contains:

• an identification of the security mechanism used,

• security information used by this mechanism to establish the required trust betw
client and target and to set up the security context necessary for protecting mess
later,

• the principal’s credentials, and

• information for protecting this security data in transit.

In addition to this token, subsequent security tokens may be needed if:

• mutual authentication of client and target object is required, or

• some negotiation of security options for this mechanism is required (for examp
the choice of cryptographic algorithms).

3.1.2.3 Protecting Messages

The invocation may be protected for integrity and/or confidentiality. In either case,
messages forming the request and reply are first wrapped in a sequencing layer
envelope and then cryptographically protected by the ORB security services. For
integrity, extra information (e.g., an integrity seal) is added to the message so the ta
ORB security services can check that the message has not been changed.

For confidentiality, the message itself is encrypted so it cannot be intercepted and
in transit.

Details of how messages are protected are again mechanism-dependent. Note, ho
that messages cannot be changed once they have been protected, as they canno
understood once confidentiality protected and the integrity check will fail if they ar
altered in any way.

In SECIOP message stream protection is provided by encapsulating all SECIOP d
payloads (e.g., IIOP messages or message fragments) in a sequencing protocol f
The sequencing protocol ensures that data payloads are not duplicated (replayed
dropped (deleted), or received out-of-sequence (reordered). The sequencing proto
frame is protected by the ORB security services to ensure the state it contains is
modified by an intruder.
3-4 Security Service V1.5 May 2000



3

y all
ts

urity

nd a
ey

duct.

logy
n,
n
is

ism,
ent

the
ct
ra
3.1.2.4 Security Mechanisms for Secure Object Invocations

The interoperability model above can be supported using different security
mechanisms.

This specification does not define a standard security mechanism to be supported b
secure ORBs. It therefore does not specify a particular set of security token forma
and message protection details for a particular security mechanism.

3.1.2.5 Security Mechanism Types

There are two major types of security mechanisms used in existing systems for sec
associations. They are those using:

• Symmetric (secret) key technology where a shared key is used by both sides, a
trusted third party (a Key Distribution Service) is used by the client to obtain a k
to talk to the target.

• Asymmetric (public) key technology where the keys used by the two sides are
different, though linked. In this case, long term, public keys are normally freely
available in certificates which have been certified by a Certification Authority.

Several existing systems use symmetric key technology for key distribution when
establishing security associations. These are usually based on MIT’s Kerberos pro
Such systems normally include no public key technology.

Other security mechanisms use public key technology for authentication and key
distribution as this has advantages for scalability and inter-enterprise working. The
number of public key based systems are growing and the use of public key techno
is standard for non-repudiation, which is an optional component in this specificatio
and increasingly needed in commercial systems so any OMG security specificatio
must not preclude its use. Also, the use of smart cards with public key technology
increasing. However, non-repudiation is not a service required for secure
interoperability.

Interoperating with Multiple Security Mechanisms

The current specification allows a client to identify the security mechanism(s)
supported by the target. Where a client or target supports more than one mechan
and there is at least one mechanism in common between client and target, the cli
can choose one which they both support.

Some security mechanisms may support a number of options, for example:

• a choice of cryptographic algorithms for protecting messages,

• a choice of using public or secret key technology for key distribution.

The appropriate options can be chosen by the client in the same way as choosing
basic mechanism, via the client security policy and information in the target’s obje
reference. However, some mechanisms will be able to negotiate options using ext
exchanges at association establishment which are specific to the particular
mechanisms.
Security Service V1.5 Security Interoperability Protocols May 2000 3-5



3

s for

may

this

,

al’s

d on
:

es

this

in

ns
ect

the

can
Interoperating between Underlying Security Services

Security mechanisms for secure object invocations use underlying security service
authentication, privilege acquisition, key distribution, certificate management, and
audit. Under some circumstances, these need to inter-operate. For example, key
distribution services may need to communicate with each other, and audit services
need to transmit audit records between systems.

Interoperability of such underlying security services is considered out of scope of
specification, as they are mechanism dependent.

3.1.2.6 Interoperating between Security Policy Domains

The sections above consider interoperability within a security policy domain where
consistent security policies apply to access control, audit and other aspects of the
system. These rely on information about the principal, including its identity and
privilege attributes, being trusted and having a consistent meaning throughout the
policy domain.

Where a large distributed system is split into a number of security policy domains
interoperation between security policy domains is needed. This requires the
establishment of trust between these domains. For example, an ORB security
association service at a target system will need to identify the source of the princip
credentials so it can decide how much to trust them.

Once the identity of the client domain has been established, interdomain security
policies need to be enforced. For example, access control policies are mainly base
the principal’s certified identity and privilege attributes. The policy for this could be

1. The target domain trusts the client domain to identify principals correctly, but do
not trust their privilege attributes, so treats all principals from other domains as
guest users.

2. The administrators of the two domains have agreed some privilege attributes in
common, and trust each other to give these only to suitably authorized users. In
case, the target system will give principals from the client domain with these
privileges the same rights as principals from the target domain.

3. The administrators of the two domains agree what particular privilege attributes
the client domain are equivalent to particular privilege attributes in the target
domain, and so grant corresponding access rights.

For the first two of these, the target domain security policy could enforce restrictio
about which privilege attributes may be used there. This would not necessarily aff
the interoperability protocols - theget_attributes operation will simply not return all
of the privileges. But even in this case, some security mechanisms will choose to
modify the principal’s credentials to exclude unwanted attributes.

In the third case, the privilege attributes need to be translated to the ones used in
target domain. If this translation is to be done only once, an interdomain service is
likely to be used which both translates the credentials and reprotects them so they
be delegated between nodes in the target domain.
3-6 Security Service V1.5 May 2000



3

ay
ked

.

ture,
ms.

be
ity

7

ith

to
tag

ay

is

ix
Such an interdomain service may be invoked by the ORB Security Services, but m
be invoked by a separate interoperability bridge between the ORB domains. If invo
by an ORB service, it extends the implementation of theVault object described
previously and this will probably call on a mechanism specific Interdomain Service

3.1.2.7 Secure Interoperability Bridges

Secure Interoperability Bridges between ORB domains are relevant to this architec
as in future, they may be specified as part of some secure CORBA compliant syste
However, this section does not describe how to build such bridges.

Secure interoperability bridges may be needed for:

• ORB-mediated bridges, where data marshalling is done outside the ORB and
associated ORB services.

• Translating between security mechanisms (technology domains).

• Mapping between security policy domains.

In all these cases, both the system and application data being passed will need to
altered, affecting its protected status. This needs to be re-established using secur
services trusted by both client and target domains.

3.1.3 Protocol Enhancements

The following sections detail the enhancements required to the CORBA 2
interoperability specification for security.

Section 3.1.4, “CORBA Interoperable Object Reference with Security,” on page 3-
defines the enhancements needed to the Interoperable Object Reference (IOR).

Section 3.2, “Secure Inter-ORB Protocol (SECIOP),” on page 3-34 defines the
enhancements needed to secure GIOP messages and Section 3.8, “DCE-CIOP w
Security,” on page 3-105 defines the DCE-CIOP with security.

3.1.4 CORBA Interoperable Object Reference with Security

The CORBA 2 Interoperable Object Reference (IOR ) comprises a sequence of ‘tagged
profiles.’ A profile identifies the characteristics of the object necessary for a client
invoke an operation on it correctly, including naming/addressing information. The
is a standard, OMG-allocated identifier for the profile which allows the client to
interpret the profile data, but although the tag is OMG-allocated, the profile itself m
not be OMG-specified.

A multi-component profile is a profile that itself consists of tagged components. Th
specification defines TAGS for use in such multi-component profiles as follows:

The following TAGs are defined:

• IIOP components, which can be used in a multi component profile (see Append
B, Section B.8, “Secure Inter-ORB Protocol (SECIOP),” on page B-21.
Security Service V1.5 Security Interoperability Protocols May 2000 3-7



3

erall

ity
mple,

y of
an
of

r

for
ity
the

es

lues

ity

is:
• Security componentsthat identify security mechanism types, one for each
mechanism supported. Each security mechanism component can also include
mechanism specific data.

• Aspects of the target object policy that cover the dependencies between and ov
use of components (for example, the quality of protection required) may be
specified in separatepolicy components. This avoids establishing unnecessary
dependencies between other (technology) components.

Use of tagged components within the multi component profile to carry IIOP, secur
and other data may cause performance degradations in certain situations. For exa
if an IOR carries many tagged components that are unrecognized by a client
implementation, it must process these when they appear before those that it does
recognize. Some, such as the components describing IIOP, have a high probabilit
being recognized and used by many clients. Consequently, implementations with
objective to optimize IOR processing will place such components at the beginning
the tagged component sequence.

3.1.4.1 Security Components of the IOR

The following new tags are used to define the security information required by the
client to establish a security association with the target. Note that a tag may occu
more than once, denoting that the target allows the client some choice. All tag
component data must be encapsulated using CDR encoding

TAG_x_SEC_MECH

This is the prototype TAG definition for OMG registered security association
mechanisms. The mechanism is identified by the TAG value. The component data
TAGs of this kind is defined by the person who registers the TAG. The confidential
and integrity algorithms to be used with the mechanism may either be encoded into
TAG value or in mechanism specific data (see Appendix G, Section G.2, “Guidelin
for Mechanism TAG Definition in IORs,” on page G-1).

If this definition includes

sequence <TaggedComponent> components;

then the components field can contain any of the other component TAGs, whose va
can be specific to the mechanism.

If the mechanism is selected for use, the components in this field are used in
preference to any recorded at the multi component level.

Multiple TAG_x_SEC_MECH components may be present to enumerate the secur
mechanisms available at the target.

TAG_GENERIC_SEC_MECH

This TAG enables mechanisms not registered with the OMG, but common to both
client and target to be used with the standard interoperability protocol. Its definition
3-8 Security Service V1.5 May 2000



3

can

e

he
struct GenericMechanismInfo {
sequence <octet> security_mechanism_type;
sequence <octet> mech_specific_data;
sequence <TaggedComponent> components;

};

The first part of this TAG is thesecurity_mechanism_type which identifies the
type of underlying security mechanism supported by the target including
confidentiality and integrity algorithm definition. It is an ASN.1 Object Identifier
(OID) as described for use with the GSS-API in IETF RFC 1508.

The mech_specific_data field allows mechanism specific information to be passed
by the target to the client.

The components field can contain any of the other component TAGs, whose values
be specific to the mechanism.

If the mechanism is selected for use, the components in this field are used in
preference to any recorded at the multi component level.

Multiple TAG_GENERIC_SEC_MECH components may be present to enumerate th
security mechanisms available at the target.

TAG_ASSOCIATION_OPTIONS

This TAG is used to define the association properties supported and required by t
target. Its definition is:

struct TargetAssociationOptions{
AssociationOptions target_supports;
AssociationOptions target_requires;

};

target_supports - gives the functionality supported by the target

target_requires - defines the minimum that the client must use when invoking the
target, although it may use additional functionality supported by the target.

The following table gives the definition of the options.

Table 3-1 Definition of Association Options

Association Options target_supports target_requires

NoProtection unprotected messages the minimal protection
requirement is unprotected
invocations.

Integrity integrity protected messages messages to be integrity
protected

Confidentiality confidentiality protected
invocation

invocations to be protected
for confidentiality
Security Service V1.5 Security Interoperability Protocols May 2000 3-9



3

nd

n the
TAG_SEC_NAME

The target security name component contains the security name used to identify a
authenticate the target. It is an octet sequence, the content and syntax of which is
defined by the authentication service in use at the target. The security name is ofte
name of the environment domain rather than the particular target object.

The TAG_SEC_NAME component is not needed if the target does not need to be
authenticated.

DetectReplay the target can detect replay
of requests (and request
fragments)

security associations to
detect message replay

DetectMisordering target can detect sequence
errors of requests and
request fragments

security associations to
detect message mis-
sequencing

EstablishTrustInTarget the target is prepared to
authenticate its identity to
the client

(this option is not defined)

EstablishTrustInClient the target is capable of
authenticating the client

establishment of trust in the
client’s identity

NoDelegation target supports no
delegation

the target states that
delegation will not be
supported

SimpleDelegation the target supports simple
delegation

(this option is not defined)

CompositeDelegation the target supports
composite delegation

(this option is not defined)

Table 3-1 Definition of Association Options(Continued)

Association Options target_supports target_requires
3-10 Security Service V1.5 May 2000



3

1”
ism
o

IOR

ents
3.1.4.2 IOR Example

In this example, if mechanism “mech 1” is used, the target security name is “MBn
while the association must use integrity replay and misordering options. If mechan
“mech 2” is used, no mechanism specific security name has been specified and s
“Manchester branch” is used as the security name. The association options are
EstablishTrustInClient and Integrity.

3.1.4.3 Operational Semantics

This section describes how an ORB and associated ORB services should use the
security components to provide security for invocations and how the target object
information should be provided.

Client Side

During a request invocation, the non-security tagged components in theIOR multi-
component profile indicate whether the target supports IIOP and/or some other
environment specific protocol such as DCE-CIOP. Security mechanism tag compon

Table 3-2 IOR Example

tag value mech specific tag value

tag_sec_name “Manchester branch”

tag_association_options supports and requires
integrity and to
establish trust in the
clients privileges

tag_generic_sec_mech mech 1 oid

tag_sec_name “MBn1”

tag_association_options supports and requires
integrity, replay
detection, misordering
detection, and to
establish trust in the
client’s security
attributes

tag_generic_sec_mech mech 2 oid

tag_association_options target requires and
supports
confidentiality and to
establish trust in the
client’s security
attributes
Security Service V1.5 Security Interoperability Protocols May 2000 3-11



3

,

o
nd
cted

e the

, and

s

ires

t
g

lar
e is
specify the security mechanisms (and associated integrity and confidentiality
algorithms) this target can use. The ORB selects a combination of interoperability
protocol and security mechanism that it can support.

If there is a common interoperability protocol, but no common security mechanism
then a secure request on thisIOR cannot be assured.

If the same security mechanism is supported at the client and the target, but the
TAG_ASSOCIATION_OPTIONS component specifies no protection is needed or n
SEC_MECH is specified, then unprotected requests are supported by the target, a
the request can be made without using security services. If the target requires prote
requests, then the ORB must choose an alternative transport and/or security
mechanism.

The IOR tags and the client’s policies and preferences are used together to choos
security for this client’s conversation with the target.

The specific security service used may not understand the CORBA security values
so may require them to be mapped into values it can understand.

Determining Association Options

The Association Optionsin Table 3-1 on page 3-9, lists possible association option
such asNoProtection, Integrity , DetectReplay.

The actual association options used when a client invokes a target object via anIOR
depend on:

• The client-side secure invocation policy and environment.

• Client preferences as specified byset_association_options on theCredentials
or set_policy_overrides of the object reference invoked with aQOPPolicy object
as one of the Policies to be overridden.

• The target-side secure invocation policy and environment (as indicated by
information in theTAG_ASSOCIATION_OPTIONS component).

An association option should be enforced by the security services if the client requ
it and the target supports it, or the target requires it and the client supports it.

If the target cannot support the client’s requirements, then a
CORBA::NO_PERMISSION exception should be raised. If the client cannot mee
the requirements of the target, then the invocation may optionally proceed, allowin
policy enforcement on the target side.

Target Side

The security information required in theIOR for this target must be supplied from the
target (or its environment). This specification does not define exactly when particu
information is added, as some of it may only be needed when the object referenc
exported from its own environment.

The security information may come from a combination of:
3-12 Security Service V1.5 May 2000



3

”

ne.

r

ues

get

n

d
n

on.

2.

on

of
f key
• The object’sown credentials(see Section 2.3.7, “Security Operations on Current,
on page 2-93). This includes for example, the target’s security name. It could
include mechanism specific information such as the target’s public key if it has o

• Policy associated with the object. This includes, for example, the QOP.

• The environment. This includes, for example, the mechanism types supported.

The target object does not need to supply this information itself. This is done
automatically by the ORB when required. For example, much of the information fo
the target’s own credentials are set up on object creation.

As at the client, the specific security service used may require CORBA security val
to be mapped into those it understands.

If when the client invokes the target identified by theIOR an Invoke Response
message is returned for the request with the status
INVOKE_LOCATION_FORWARD , then the returned multiple component profile
must contain security information as well as the new binding information for the tar
specified in the originalInvoke Requestmessage.

Any security information in the returned profile applies to the new binding informatio
and replaces all security information in the original profile. This
INVOKE_LOCATION_FORWARD behavior can be used to inform the client of
updated security information (even if the address information hasn’t changed).

3.1.5 Common Secure Interoperability Levels

Three Common Secure Interoperability Levels are defined to help in classifying an
positioning the various interoperability facilities that are defined, and also to help i
concisely stating the conformance requirements. The three CSI levels are:

CSI Level 0- supports only identity based policies without delegation.

CSI Level 1- supports identity based policies with or without unrestricted delegati

CSI Level 2- supports identity and privilege based policies with controlled
delegation.

A complete description of the these CSI levels of interoperability can be found in
Appendix D, Section D.7.2, “Common Secure Interoperability Levels,” on page D-1

3.1.6 Key Distribution Types

Security mechanisms use cryptography in the establishment of a secure associati
between a client and target and in protecting the data between them. Security
mechanisms differ in the type of cryptography they use, particularly for distribution
keys. (Keys are assigned to clients, targets, and trusted authorities). Three types o
distribution are defined in this specification:

• Secret keys- use secret key technology for distribution of keys for principals.
Security Service V1.5 Security Interoperability Protocols May 2000 3-13



3

for

sms
fied:

cret

2).
ns
SI

n
].

of
• Public keys - use public key technology for distribution of keys for principals,
though may use secret key technology for message protection.

• Hybrid - use secret key technology for key distribution for principals within an
administration domain, and public key technology for key distribution for trusted
authorities, and hence between domains.

All types of key distribution can be used to support all the facilities in CORBA
Security for secure object invocations (though public key is almost universally used
non-repudiation). The choice of mechanism to use depends on a customer’s
requirements. For example, to fit with other systems and for scalability to inter-
enterprise working.

3.1.7 Security Mechanisms Hosted on SECIOP

The choice of protocol to use depends on the mechanism type required and the
facilities required by the range of applications expected to use it. How the mechani
underlying the following three security protocols are hosted on SECIOP are speci

3.1.7.1 1. SPKM Protocol

Supports identity based policies without delegation (CSI level 0) using public key
technology for keys assigned to both principals and trusted authorities. The SPKM
protocol is based on the definition in [20].

3.1.7.2 2. GSS Kerberos Protocol

Supports identity based policies with unrestricted delegation (CSI level 1) using se
key technology for keys assigned to both principals and trusted authorities. It is
possible to use it without delegation (providing CSI level 0).

The GSS Kerberos protocol is based on the [12] which itself is a profile of [13].

3.1.7.3 3. CSI-ECMA protocol

Supports identity and privilege based policies with controlled delegation (CSI level
It can be used with identity, but no other privileges and without delegation restrictio
if the administrator permits this (CSI level 1) and can be used without delegation (C
level 0).

For keys assigned to principals, it has two options:

• It can use either secret or public key technology.

• It uses public key technology for keys assigned to trusted authorities.

The CSI-ECMA protocol is based on the ECMA GSS-API Mechanism as defined i
ECMA 235, but is a significant subset of this - the SESAME profile as defined in [16
It is designed to allow the addition of new mechanism options in the future; some
these are already defined in ECMA 235.
3-14 Security Service V1.5 May 2000



3

ls.

sted

s

e
at

A

re

e

on

ng
The following table shows which CSI functionality is supported with which protoco

3.1.8 Security Mechanisms Hosted Directly on IIOP

The SSL [21] protocol which provides for confidentiality and integrity within the IP
sockets paradigm can be used to provide interoperability based on this protocol ho
directly on IIOP. How this is done is specified in Section 3.7, “Integrating SSL with
CORBA Security,” on page 3-103. It supports identity based policies without
delegation.

3.1.9 Choices of Protocols, Cryptographic Profiles and Key Technologie

What combination of Security Protocols, Key Technologies, and Cryptographic
Profiles are the most desirable has been subject of debate both inside and outsid
OMG. In this specification, certain choices have been made based on the belief th
these choices best meet OMG’s current needs given the other constraints.

3.1.9.1 Choice of Protocol and Key Technology

GSS Kerberos is specified as the mandatory protocol for common secure
interoperability, as Kerberos is widely available and most vendors can support it.
However, it does not provide all facilities required and is secret key only.

Several other protocols are specified as non-mandatory options follows:

• CSI-ECMA is specified as a protocol to provide support for the full set of CORB
security facilities using public key or secret key technology.

• SPKM is specified as a simpler public key protocol suitable for applications whe

• access and audit policies are static, and

• at each stage in a chain of object invocations, the policies depend only on th
identity of the immediate invoker, not the initiator of the chain.

• SSL is specified for use in the web market.

3.1.9.2 Cryptographic Profiles

Security mechanisms use cryptography in the establishment of a secure associati
between a client and target and in protecting the data between them. Different
cryptographic algorithms are used to support particular security functions dependi

Table 3-3 CSI Functionality and Protocols

Protocol CSI Level SPKM GSSKerberos CSI-ECMA

0 Supported Supported Supported

1 Not supported Supported (Mandatory) Supported

2 Not supported Not supported Supported
Security Service V1.5 Security Interoperability Protocols May 2000 3-15



3

he

red
s
ore

n
nt.

e
be

to

ors

o

date
se

ard
n

n the
nts.

te
on the type of mechanism used and also the regulations on use of cryptography. T
combination of algorithms used to provide particular security using a particular
mechanism is called a cryptographic profile.

Currently, different cryptographic algorithms, and/or different key lengths are requi
to meet export controls and regulations on use of cryptography in various countrie
(see “International Deployment” on page 3-17). Although some vendors produce m
than one version of secure products for different markets, they are increasingly
reluctant to do this. For common secure interoperability, a particular cryptographic
profile is needed. Some options are to standardize:

• Integrity only for user data, not confidentiality. If done usingMD5, this is likely to
be exportable and generally deployable, but doesn’t provide confidentiality whe
interoperating. This does not provide the functionality which some users will wa

• Integrity and confidentiality using weak keys only. This provides the required
functionality, in a way which can generally be exported, but does not provide th
strength of protection needed by some customers. Also, products using it may
subject to import controls or other regulations in some countries.

• On strong confidentiality and integrity, which customers want, but will be subject
export controls in most countries and to deployment regulations in some. Leave
vendors and customers to sort out the problems.

This chapter makes only the first of these options mandatory; however, implement
of all profiles may choose to support other profiles also.

3.1.9.3 Conformance to External Security Mechanisms

This specification uses protocols defined in other standards documents. It refers t
particular versions of these standards, which is needed for interoperability. If the
versions of these external documents change in future, there may be a need to up
this specification so that it is in line with the most accepted external version of the
standards.

3.1.10 Common Secure Interoperability Requirements

This section describes the requirements that Common Secure Interoperability is
expected to meet.

The Common Secure Interoperability specification is required to provide for stand
security mechanisms, simple delegation, and international deployment. This sectio
discusses the key requirements for common secure interoperability that have drive
design of this specification and how this specification responds to these requireme

3.1.10.1 CORBA Standard Security Mechanisms

Standard CORBA security mechanisms are required so that ORBs can interopera
securely at all.
3-16 Security Service V1.5 May 2000



3

bove,
in

ty

of

ays

Bs,
one
nd

osen
ry

a
ata
CSI
ens
es

itor.
rent.

he

re
Four popular security mechanisms to meet different circumstances, as described a
can be used to host CORBAsecurity in a standard way. One of the four described
this chapter is mandatory and all conformant ORBs must support it. Interoperabili
between conformant ORBs is always possible using this; however, the facilities
supported when using it are limited.

Interoperability also requires common use of cryptographic algorithms. A number
cryptographic profiles are specified to meet the needs of different markets and
countries. One is mandatory and interoperability between conformant ORBs is alw
possible using this; however, it provides data integrity but not confidentiality.

Where multiple mechanisms and cryptographic profiles are supported by both OR
the client and target object must agree which to use. In this specification, this is d
by the client looking at the security mechanism tag in the target object reference a
choosing an appropriate mechanism and profile which both support. (In future,
negotiation of mechanisms may be supported.)

3.1.10.2 International Deployment

International deployment requires that the security mechanisms and algorithms ch
can be used worldwide in countries which are subject to different national regulato
controls on the use of cryptography. It also requires that they can be used across
international boundaries. International deployment may also be affected by export
control regulations and other issues.

Requirements distilled from the key regulations affecting international deployment
include:

• Keeping the amount of information which must be encrypted for confidentiality to
minimum. In general, encryption of keys is acceptable, but encryption of other d
may not be. For this reason, encryption of security attributes is undesirable. At
level 2, where more attributes are generally needed, the part of the security tok
concerned with key distribution is separated from the part used to carry privileg
(e.g., in CSI-ECMA); therefore, the latter part does not have to be encrypted.

• Being able to use identities for auditing which are anonymous, except to the aud
For this reason, identities used for access control and audit may need to be diffe
A separateAuditId can be transmitted at level 2.

• Allowing use of different cryptographic algorithms, with different lengths of keys
for specified functions to meet export and use regulations in different countries.
The specification defines cryptographic profiles which allow for different cases. T
mandatory one provides data integrity only, as this is generally easier to deploy
internationally.

There may be further requirements on secure ORB products to ensure that they a
exportable. For example, they must not allow easy/uncontrolled replacement of
cryptographic algorithms. This affects the construction of the system, but not this
interoperability standard, so is not considered further here.
Security Service V1.5 Security Interoperability Protocols May 2000 3-17



3

d in
hm
IT

ort

stem

sort

ant

stem

Also,

lic

A
ate

rity
ch

te

be

s
on
Other restrictions on the use of algorithms and security mechanisms are highlighte
“Identifying Encumbered Technology” on page 3-20. For example, the DES algorit
is subject to export controls, while RSA requires licensing in some countries. The M
version of the Kerberos technology, widely used in the USA, is also subject to exp
controls.

3.1.10.3 Consistency

It should be possible to provide consistent security across the distributed object sy
and with associated legacy and other non-object systems. This includes:

• Support of consistent policies for which principals should be able to access the
of information, within a security domain, that includes heterogeneous systems.

For this specification, it requires the ability to transmit consistent privilege and
other attributes between ORBs to support these policies. Level 0 and 1 conform
ORBs can transmit identities, level 2 conformant ORBs can transmit a range of
privilege attributes. These can be the ones used in existing systems, though sy
specific ones will not be usable in other systems.

• Fit with existing logons (so extra logons are not needed) and with existing user
databases (to reduce the user administration burden).

Log on needs to result in credentials which include the information required to
support the specified security mechanisms. Note that single logon with secure
messaging, web, etc. generally requires use of public key based mechanisms.
if non-repudiation is supported, they will also need to include the security
information required to support the non-repudiation mechanism (normally, a pub
key mechanism).

Also, interoperating with non-object systems may require, for example, a CORB
object implementation which calls a non-CORBA application to be able to deleg
incoming credentials (assuming compatible security mechanisms.)

• Fit with all non-object systems is clearly not possible if such a system uses secu
mechanisms which are incompatible with the one used in the object system. Su
systems may be able to use CORBA Security, but will not be able to interopera
using the common secure interoperability standard.

This specification includes an interoperability level which supports privileges and a
public key (as well as a secret key) mechanism to support these requirements.

3.1.10.4 Scalability

It should be possible to provide security for a range of systems from small, local
systems to large intra- and inter-enterprise systems. For larger systems, it should
possible to:

• Base access controls on the privilege attributes of users such as roles or group
(rather than individual identities) to reduce administrative costs. This specificati
includes the transmission of such privilege attributes in CSI level 2.
3-18 Security Service V1.5 May 2000



3

ils,

n
le,

nd

ld be

ch
d

s. If
et.

ther

ss
they
• Have a number of security domains which enforce different security policy deta
but support interworking between them subject to policy. (This specification
includes the architecture for such inter-domain working, though this specificatio
does not define interface for this.) Use of public key technology helps large sca
particularly inter-enterprise interoperability.

• Manage the distribution of cryptographic keys across large networks securely a
without undue administrative overheads.

3.1.10.5 Flexibility of Security Policy

The security policies required varies from enterprise to enterprise, so choices shou
allowed, though standard policies should be supported for common secure
interoperability.

Access Policies

At CSI levels 0 and 1, theAccessIdis the only privilege attribute supported. The
standardDomainAccessPolicydefined in Section 2.4.4, “Access Policies,” on
page 2-119 (or other access policies) can be used with only this privilege.

At CSI level 2, conformant ORBs are able to transmit further privilege attributes (su
as role and group), so theDomainAccessPolicy(and other access policies) can be use
with these privileges also.

CSI level 2 is designed to allow transmission of further privileges, including user
defined privileges and security clearances as needed for multi-level secure system
received by a conformant ORB, they will be available for access control at the targ
However, conformant ORBs need not transmit them, so use of such privileges is
subject to the agreement between the systems.

The mechanisms defined here also allow a wider range of privileges, etc. to be
supported and other access policies to be used. However, interoperability with all o
conformant ORBs is not guaranteed in this case.

Audit Policies

All CSI levels provide anAuditId that can be used in audit policies. CSI level 2 can
transmit anAuditId , which is anonymous to all but audit administrators.

3.1.10.6 Application Portability

Application portability is an important OMG requirement. The many applications
which are unaware of security will continue to be portable.

Applications which enforce their own security policies should still be portable acro
ORBs supporting common secure interoperability if the access and audit policies
use rely only on security attributes which are mandatory in the chosen CSI level.
Security Service V1.5 Security Interoperability Protocols May 2000 3-19



3

ed.

ing
cal

or
ay

ns

ros

the

as
ude
Applications should be unaware of the security mechanism used to enforce the
security, unless they specifically ask what it is (e.g., usingget_service_information ,
see Section 2.3.2, “Finding Security Features,” on page 2-73).

3.1.10.7 Security Services Portability/Replaceability

The CORBA Security specification includes replaceability conformance options.

The objects supporting the security mechanism (PrincipalAuthenticator , Vault , and
Security Context) can be replaced to support the mechanisms in this specification.
However, if logon outside the object system is supported, this will need to provide
credentials including the security information needed by the CSI mechanism(s) us

If the invocation access policy is replaced, this can utilize privileges transmitted us
CSI protocols. However, if an ORB wishes to control access on invocations using lo
(e.g., operating system) attributes, then mapping of attributes prior to calling the
Access Decisionobject is needed.

3.1.10.8 Performance

Security should not impose an unacceptable performance overhead, particularly f
normal commercial levels of security, although a greater performance overhead m
occur as higher levels of security are implemented.

Details of the performance overhead depend on the mechanism used and its
implementation; however, in this specification:

• Sufficient information can be carried in theIOR so that the client knows what
security the target supports and does not have to negotiate protocols and optio
with it.

• The mechanisms used allow theinitial_context_token to be transmitted with first
message, if mutual authentication is not required.

3.1.10.9 Identifying Encumbered Technology

This specification includes technology which is encumbered to some extent.

• The Kerberos V5 technology is licensable from the Massachusetts Institute of
Technology without cost and is widely deployed within the USA. However, it is
subject to export control from the USA; therefore, [12] is the definition of the
protocol used here, as this can be implemented independently of the MIT Kerbe
code.

• SPKM implementations are available, though not free. As for other mechanisms,
(draft) standard is the basis of this specification.

• SESAME implementation is available, but is not free for commercial use, and h
restrictions on cryptography for export reasons (the public version does not incl
commercial cryptographic profiles - it has the secret key algorithm replaced by
XOR for export control reasons).
3-20 Security Service V1.5 May 2000



3

le

s
e it
ely

, as

2.3
at:

tes

in

ses
r

f

teed
• There are two patents associated with the CSI-ECMA protocol. These are usab
free of charge for implementations conformant with this specification under fair
conditions (formal definition of these are available from Bull and ICL).

• The DES algorithm is widely deployed internationally, but is subject to export
controls. Export with key lengths which provide strong confidentiality is not
generally permitted.

• Increasingly, the RSA algorithm is widely deployed internationally; however, it i
subject to licensing in the USA. It is also subject to export controls, though wher
can be shown that it is not used for confidentiality, products using it are more lik
to be exportable.

• Any other cryptographic algorithms used are generally subject to export controls
is any interface which makes it easy to replace algorithms.

3.1.11 Relation to CORBA Security Facilities and Interfaces

This section describes how the security facilities and interfaces defined in Sections
through 2.5 map to various elements of security protocol mechanisms. It is aimed

• Object implementors developing applications using a secure object system who
need to know what security is available.

• Implementors of security policies who may be constrained by the security attribu
available when interoperating according to this standard.

• ORB implementors supporting replaceable security policies.

3.1.11.1 Functionality

The security information that is transmitted between ORBs, and which security
facilities and policies are supported in an interoperable environment, is described
these sections. Three levels of secure interoperability are defined specifying the
particular security attributes that conformant ORBs must support.

Note that the interoperability defined here is for interoperability of requests/respon
between ORBs. It does not include interoperability of the evidence tokens used fo
non-repudiation.

3.1.11.2 Replaceability

In replaceability, options which allow ORB implementors to support a wide range o
security policies and mechanisms is defined. For example, the standard
DomainAccessPolicescan be replaced by other policies where ORBs support the
appropriate replaceability option. This specification still allows this replaceability,
though the policy being added may be restricted by the security information guaran
to be available.
Security Service V1.5 Security Interoperability Protocols May 2000 3-21



3

the
n
le

tely

wing

o

use
r a

ges.

he

of

s
t
l 0

e
y

the

n.
.3
nd
This specification allows replaceability of security mechanisms by replacement of
Vault andSecurity Context objects. It specifies mechanisms and protocols which ca
be implemented via a GSS-API interface. This adds the potential for having a sing
implementation of theVault andSecurity Context objects, which by using GSS-API,
would be able to use different security mechanisms.

3.1.11.3 Levels of Interoperability

This specification includes three interoperability levels, as described more comple
in Appendix D, Section D.7.2, “Common Secure Interoperability Levels,” on
page D-12. This section gives information about these levels and an example sho
the difference in the way they handle a particular problem.

Common Secure Interoperability Level 0

CSI level 0 supports identity based policies without delegation. It requires ORBs t
support the following:

• Authentication of principals using security functions under one ORB, and then
of the resultant credentials when making a secure invocation to an object unde
different ORB.

• Secure associations to establish trust between client, target, and protect messa

• As part of the secure association, the security name of the client is passed to t
target and used to set bothAccessIdandAuditId so that identity based access and
audit policies can be supported.

The identity is always that of the immediate invoker of an object in a chain of
object invocations, this is only the same as the initiator of the chain at the point
entry to the chain.

Common Secure Interoperability Level 1

CSI level 1 supports identity based policies with unrestricted delegation. It require
ORBs to support the mandatory part of the CORBA Security when two conforman
ORBs interoperate (using the same security mechanism). It provides the CSI leve
facilities plus security information (in particular, the security name) of a principal in
the call chain can be delegated to objects (subject to security policy).

Once this security information has been delegated, the intermediate object has th
choice of acting under its own identity or delegating the initiating principal’s identit
when invoking another object. When delegating another principal’s identity, the
delegated identity (rather than the immediate invoker’s identity) is used to set both
AccessIdandAuditId at the target.

Common Secure Interoperability Level 2

CSI level 2 supports identity and privilege based policies with controlled delegatio
ORBs supporting this level must support interoperability of all facilities in Sections 2
through 2.5 concerned with object invocation. CSI level 2 provides the CSI level 0 a
level 1 facilities plus:
3-22 Security Service V1.5 May 2000



3

of

ed
ude
pe

his
t

m,

at

,
y to

nd

d
ot

ted

r’s
• The security information of the immediate invoker or the delegated information
the initiating principal can include more security attributes, as follows:

• an extensible range of privilege attributes (e.g., roles, groups, enterprise defin
attributes) to support a wider range of policies. Generally, these attributes incl
an AccessIdwhich is independent of the security name (and the mechanism ty
used) and is used to set theAccessIdat the target. Interoperability using particular
types of privileges depends on these privileges being common to both ORBs. T
CSI specification defines which privileges a CSI level 2 conformant ORB mus
support (see Appendix D, Section D.7.2, “Common Secure Interoperability
Levels,” on page D-12.

• a separateAuditId can be transmitted. This may be anonymous (except to the
audit administrator). It will always represent the actual principal using the syste
even when theAccessIdrepresents someone who has allowed another user to
access the system on his behalf.

• The delegation of a principal’s attributes can be controlled (for example, usable
only identified (groups of) targets). Intermediate receiving delegated security
attributes of a principal will not always be able to delegate them.

• Composite delegation is allowed for, but support for this is not mandatory.

Example

This section looks at an example of a secure object system which highlights the
difference between the delegation facilities of the three CSI levels. In this example
Bob wants to close his bank account and is prepared to give Dan power of attorne
do this.

• At CSI level 0, no delegation is possible; therefore, Bob has to go to the bank a
close the account himself.

• At CSI level 1, Bob gives Dan unlimited power of attorney to act for him (as
delegation is unrestricted). Dan can close Bob’s bank account. As the power of
attorney is unlimited, Dan can also read Bob’s medical records and pass on the
power of attorney to Mark - who can also close Bob’s bank account, read Bob’s
medical records, etc.

• At CSI level 2, Bob gives Dan the power of attorney to close his bank account;
therefore, Dan can close the account. But this does not include the right to rea
Bob’s medical records (as only limited privileges were given to Dan) and does n
include the right to give the power of attorney to Mark (as delegation was restric
to Dan).

3.1.12 Security Functionality

This section reviews the security functionality in Section 2.3, “Application Develope
Interfaces” through Section 2.5, “Implementor’s Security Interfaces” and specifies
which functionality is supported interoperably at which CSI level. Some security
functionality is supported at all CSI levels, some only at CSI level 1 or 2.
Security Service V1.5 Security Interoperability Protocols May 2000 3-23



3

lt of
ain

n of

re,

d”
es

s a
r,
all

all
I

ns

rt of

ths
3.1.12.1 Authentication

The CSI mechanisms do not specify authentication of principals, but use the resu
such authentication. Principal authentication must result in credentials which cont
the security information needed by the security mechanisms supported by this
conformant ORB.

CSI mechanisms require authenticated principals (see Section 2.3.3, “Authenticatio
Principals,” on page 2-73).

3.1.12.2 Access Control

Access controls depend upon the privileges of the principal.

At CSI levels 0 and 1, only the principal’s identity is available at the target; therefo
Access Policies using this level must either:

• use only the principal’s identity for access control, or

• retrieve other attributes for that principal prior to taking the access decision (the
“pull” model).

The standardDomainAccessPolicyassumes all privileges required have been “pushe
from the client; therefore, they will be restricted to using identity only. Access polici
using the pull model will not be portable, if the source of such attributes is system
dependent.

At CSI level 2, theAccessPoliciescan use any of the privileges supported by both
ORBs. All CSI level 2 conformant ORBs supportAccessId, GroupId , andRole. They
may also transmit user defined privileges, where the user enterprise concerned ha
CORBA attribute family definer, and defines its own families of attributes. Howeve
some attribute types defined outside the object system may not be understood at
targets; therefore, portability of these may not be possible to all environments.

3.1.12.3 Audit

Auditing is as defined in Section 2.1.5, “Auditing,” on page 2-11, and is possible at
CSI levels. A separateAuditId (which may be anonymous) can be transmitted at CS
level 2.

3.1.12.4 Secure Invocation

Conformant implementations (all CSI levels) must support all the association optio
defined in Table 3-1 on page 3-9.

Channel bindings, as defined in GSS-API and all protocols defined here, are not pa
the mandatory specification.

Conformant implementations at level 2 allow use of algorithms with different streng
for integrity and confidentiality.
3-24 Security Service V1.5 May 2000



3

is

ets
y

me
be

t is
oth
sms
s.

and
. For
3.1.12.5 Delegation Facilities

• At CSI level 0, no delegation is supported.

• At CSI level 1, the initiating principal’s identity can be delegated to the target. It
either delegated or not - there are no other restrictions on delegation.

• At CSI level 2, the initiating principal’s privileges, as well as identity, can be
delegated to the target. Delegation can be controlled further, restricting the targ
to which the attributes can be delegated. These restrictions must be specified b
administrative action, as there are no interfaces specified in to do this in this
specification.

Level 2 protocols are also defined which allow support of composite delegation;
however, support of this is not required by conformant ORBs.

3.1.12.6 Non repudiation

Non-repudiation relies on NR credentials for handling NR evidence tokens. The sa
credentials can be used for secure invocations and non-repudiation. This will only
possible if compatible security technology is used for non-repudiation and secure
invocation. While no specific security technology is mandated for non-repudiation, i
expected that this will use public key technology. Common credentials usable for b
purposes are expected to use public key technology, to fit with public key mechani
(SPKM or the CSI-ECMA public key option), rather than with secret key mechanism

3.1.12.7 Security Policies

Security policies are potentially sharable between ORBs if they use only identities
privileges which are available at both ORBs and can be transmitted between them
example, aDomainAccessPolicythat uses roles must receive requests from an ORB
which can generate them via a CSI level 2 protocol which can transmit roles.
Security Service V1.5 Security Interoperability Protocols May 2000 3-25



3

g.

st

have
e

lling

ess

the
3.1.13 Model for Use and Contents of Credentials

The CORBA Security model includes security functionality enforced during object
invocations and by applications, as shown in Figure 3-2.

Figure 3-2 Security Functionality Enforced During Object Invocations and Applications

Most of the security services utilize the principal’s credentials either at the client
(before invoking the target object) or at the target. For example, the ORB security
services use these credentials for secure associations, access control, and auditin

To fit with the standard CSI security mechanisms, user/principal authentication mu
produce credentials suitable for both client side security controls and to fit with the
security mechanisms used for secure invocations. A single credential’s object may
security context information for more than one mechanism. Security services at th
client application use these credentials to enforce security there.

Access control policies at the target generally depend on the initiating principal’s
privilege attributes (which generally includes an identity). Normally they rely on
information from the credentials being passed from the client to the target. Other
access policies may use the pull model for obtaining privileges at the target. For
example, an access policy at the target could obtain the access identity using the
get_attributes function. It could then call, in a non-standard way, on whatever
service provides privileges in this case. Alternatively, an attribute Mapper (see
Section 3.1.13.3, “Attributes at the Target,” on page 3-28) could be used before ca
the access policy (if this optional facility is supported).

Audit policies generally require an audit id, though this may be derived like the acc
id from a single identifier.

This specification allows unauthenticated and authenticated users; however,
unauthenticated principals do not have identity attributes or privilege attributes. In
protocols defined here, principals must be authenticated.

Client

request request

Target
Object

ORB

Services
Security

ORB

Services
Security

Credentials
Credentials

application
security
controls

application
security
controls

logon
authentication

user

..

credentials info in token
3-26 Security Service V1.5 May 2000



3

ve

r (or

sed

e

A

The privilege and other attributes, as seen by theAccessDecisionobject at the target,
may not be those passed from the client because the security mechanism may ha
moderated what is available to the object system.

3.1.13.1 Credential Content at the Client

Credentials are made available to the client as the result of authenticating the use
other principal), though they may be modified later. Authenticated users have two
types of attributes visible to applications and relevant to secure interoperability:

1. Privilege attributes used for access control. These include theAccessId(the
principal’s identity as used for access control); other standard CORBA security
attributes such asGroupId , Role, Clearance, and enterprise defined attributes.

2. Identity attributes used for purposes other than access control. Only the audit
identity is relevant here.

At CSI levels 0 and 1, the only attributes which must be visible to the client and
target are theAccessIdandAuditId . These will normally be the user’s security
name.

At CSI level 2, a wider range of privilege attributes is supported.

• All conformant ORBs can generate (via security services) credentials with the
following privilege attributes:

• AccessId
• AuditId
• Role
• GroupIds - a primary group and other groups

• There may be a single identity (e.g., the access identity) which can also be u
for auditing, or separateAccessIdandAuditId may be generated.AuditId may
be anonymous.

• Optionally, there may also be other privilege attributes including user defined
attributes.

3.1.13.2 Attributes During Transmission

At levels 0 and 1, only the principal’s identity is transmitted. No other attributes ar
transmitted.

At level 2, a wide range of privileges can be transmitted including standard CORB
attributes and optionally user defined ones. Attributes may have individual defining
authorities, as at the IDL interface, or share a defining authority.
Security Service V1.5 Security Interoperability Protocols May 2000 3-27



3

es

se
get

es,”

the
,

3.1.13.3 Attributes at the Target

At CSI levels 0 and 1, when only a single identity (e.g., the security name) is
transmitted, that single identity is used to generate theAccessIdand theAuditId at the
target. When using the CSI-ECMA protocol at level 0 or 1, principal identity attribut
are transmitted separately from the security name; therefore, theAccessIdandAuditId
do not have to be generated from the security name.

At CSI level 2, all conformant ORBs can accept:

• Separate access and audit ids or a single identity used for both purposes.

• Transmission of any privileges defined in Appendix B, Section B.11.1, “Attribute
Types,” on page B-27, and any privileges with Object Identifiers which can be
mapped toSecurityAttributes .

This range of privileges can be used in access decisions at the target. Even if the
privileges are not used by the invocation access policy to control access to the tar
object, they may be obtained by the application usingCurrent::get_attributes or
Credentials::get_attribute and used in application access decisions.

The attributes at the target appear as defined in Section 3.6.2.1, “Privilege Attribut
on page 3-68. For example, they have:

• an Attribute type (family definer, family, and the type within this family),

• a defining authority, and

• the attribute value.

The attributes may need to be mapped from their form in transit to the form used at
IDL interface in response toget_attribute calls. An attribute mapper may be needed
as shown in Figure 3-3.

Figure 3-3 Attribute Mapper Diagram

ORB Security Services

Access
Decision
Object

Credentials
as seen at the

target

Target
Object

Optional
Attribute Mapper

Client

Credentials
as

generated request request

application
security
controls
3-28 Security Service V1.5 May 2000



3

are

ch as

e
h
.

Bs

a

slash

This

e

t on
.

SI-

and
DL
This mapping depends on:

• Which functionality level is supported. At levels 0 and 1, a single name must be
mapped to provide bothAccessIdandAuditId . This will be the security name if the
protocol does not carry a separateAccessIdor AuditId ; both the SPKM and GSS-
Kerberos protocols use the security name.

• Whether the access control decisions at the target uses attribute values which
valid externally from the ORB/operating system (for example, in a domain of
heterogeneous systems), or whether the Access policies use local attributes (su
operating system ids).

In line with the OMG requirement for portability, externally valid attributes are th
norm, and must be supported in conformant ORBs (so that an application whic
includes administration of its access policy is portable between unlike systems)
Mapping to local attributes may also be provided, but is not standardized in this
specification.

3.1.13.4 Mapping Security Names to Externally Valid Identities

Where the only client attribute transmitted is the security name, CSI conformant OR
map this onto both theAccessIdandAuditId in the received credentials. These both
have the same value.

When using the GSS-Kerberos, the security name protocol has two components:
realm name and a principal name. The security name is of the formprincipal@realm.
The principal name may be a multi-component name with components separated by
(/) - see [12] section 2.1.1.

When using a public key based mechanism, the security name is a directory name.
is a multi-part name (e.g., country, organization, organization unit, surname, and
common name). The security name is returned from the security mechanism in th
form of a string complying with [4] for the string representation of distinguished
names. The separators between components of the name may be commas or
semicolons.

In both cases, the full Security name is used as the value for theAccessIdandAuditId
in the IDL SecurityAttributes. This means the form of these attributes are dependen
the security mechanism used, as Kerberos and X.500 names have different forms

3.1.13.5 Mapping Other Attributes to Externally Valid IDL Attributes

Other security attributes may also be transmitted from the client when using the C
ECMA protocol. For example, at level 2, there could be aRole, GroupId , and
enterprise specific attributes as well asAccessIdand/orAuditId . Also, separate
AccessIdandAuditIds may be transmitted.

In general, these will already have values which are valid outside a particular ORB
operating system; therefore, the mapping is mainly to put these in the form of an I
SecurityAttribute. However, if a separateAuditId has not been transmitted, the
AuditId value will be copied from theAccessId. Also, if a separate defining authority
Security Service V1.5 Security Interoperability Protocols May 2000 3-29



3

et

,
iate

en

ot be
y an

dard
o it,

of
is not transmitted for an attribute, the defining authority for the attribute in IDL is s
from the issuer Domain of the authority who generated the Privilege Attribute
Certificate containing the privileges. Note also that the target security policy may
restrict which of the attributes are available to the application.

Attribute types in transmission are identified by Object Identifiers. For the standard
attribute types such as Role or GroupId (as defined in Appendix B, Section B.11.1
“Attribute Types,” on page B-27), the type is automatically translated to the appropr
CORBA family and attribute type. The value is also re-encoded, if needed, from
ASN.1 to the equivalent IDL type.

We propose that OMG should register itself in the ISO Object Identifier space. A
SecurityAttribute type where there is a family definer registered with OMG (see
Appendix B, Section B.11, “Values for Standard Data Types,” on page B-26) can th
be transmitted with an Object Identifier of:

<iso>..<omg>.<security>.<family_definer>.<family>.<attribute type>

which then can be mapped automatically onto the CORBASecurityAttribute
structure.

Attributes other than the standard attributes and those with CORBA family Object
Identifiers are not guaranteed to be understood at the target; therefore, they may n
automatically mapped to CORBA families and types. Such mapping can be done b
optional attribute mapper which understands these attribute types.

3.1.13.6 Mapping to Local Attribute Values

An ORB can support mapping of the security name and other attributes to local
operating system values such as UNIX uids and gids. This mapper could generate
different AccessIdsandAuditIds . Note that when using local values, the application
(particularly the access policy administration) will not be portable to other types of
system.

Mapping of these values is specific to the ORB and/or operating system. This stan
does not specify how this mapping is done, whether it calls on other software to d
or what types of values it generates. However, the defining authority in the IDL
SecurityAttribute must identify the local environment responsible for the meanings
these values, so the application can determine where these values are valid.

Mapping to local attributes may be done by an optional attribute mapper (see
Section 3.1.16.1, “Attribute Mapping,” on page 3-33).

3.1.14 CORBA Interfaces

In this section:

• Profiles of the interfaces defined in sections 2.3 through 2.5 are defined.

• Values of certain IDL constants relevant to these profiles are defined.
3-30 Security Service V1.5 May 2000



3

for
ata

rated

er

s.

t:
• Restrictions that application that use the Security interfaces must adhere to for
conforming to this Common Secure Interoperability standard are identified.

3.1.14.1 Service Options for Common Secure Interoperability

The following Service Options are returned byORB::get_service_information
representing the level of CSI that is supported by the ORB:

module Security {
const CORBA::ServiceOption CommonInteroperabilityLevel0 = 10;
const CORBA::ServiceOption CommonInteroperabilityLevel1 = 11;
const CORBA::ServiceOption CommonInteroperabilityLevel2 = 12;

};

The common interoperability protocols supported are identified using aServiceDetail
structure with aServiceDetailTypeof Security::SecurityMechanismType , as
described in Section 2.3.2, “Finding Security Features,” on page 2-73. The values
the CSI mechanisms are defined in Appendix B, Section B.2, “General Security D
Module,” on page B-1.

3.1.14.2 Mechanism Types

The mechanism at the application interface is defined asSecurity::MechanismType
(a string). CSI mechanisms are encoded in theMechanismTypestring by
concatenating a mechanism id and zero, one, or more cryptographic profiles sepa
by commas.

The mechanisms supported by an object are identified by tags in itsIOR . In the
MechanismType, the mechanism is identified by a “stringified” form (e.g., the integ
value 123 represented as the string “123”) of theTAG_x_SEC_MECH id value for
that mechanism. Mechanisms supported by SECIOP based protocols are:

• SPKM_1 or SPKM_2: the level 0 public key mechanisms using the SPKM
protocol.

• KerberosV5 : the level 1 secret key mechanism using GSS Kerberos protocol.

• CSI_ECMA_Secret : the CSI-ECMA secret key mechanism, using Kerberos V5.

• CSI_ECMA_Hybrid : the CSI-ECMA mechanisms which uses secret key
technology for key distribution within a domain, but public key between domain

• CSI_ECMA_Public : the CSI-ECMA public key mechanism.

Cryptographic profiles are identified by a “stringified” form of the
CryptographicProfile value as used in theIOR.

MechanismType is used in a number of operations. These include operations tha

• Deal with the mechanisms and cryptographic profiles inMechanismsPolicy
object for use withget_policy andset_policy_overrides on an object reference.
In this case, themechanisms attribute of theMechanismPolicy object (see
Security Service V1.5 Security Interoperability Protocols May 2000 3-31



3

all
hat

file
.

,

n

ence
1,

by

es
for
on

ty

sed

s

le,
Section 2.3.6.2, “Client Side Invocation Policy Objects,” on page 2-87), contains
the Cryptographic profiles available with that mechanism to communicate with t
target.

• Specify a security mechanism to use when talking to a target (e.g., using the
MechanismPolicy object with theset_policy_overrides on an object reference
andVault::Init_security_context on theVault ). In this case, either just the
mechanism name may be specified (in which case, a default cryptographic pro
will be used) or a mechanism name and cryptographic profile may be specified

Theget_service_information operation on the ORB can also return the mechanism
though in this case, it is in the form of asequence<octet> .

Mechanism tags in theIOR and mechanism type Object Identifiers (as in GSS-API) i
SECIOP messages are also used as appropriate.

3.1.14.3 Delegation Related Interfaces

Interfaces to handle no delegation, simple delegation, and composite delegation (h
delegation interfaces for CSI levels 0, 1, and part of 2) are defined in Section 2.3.1
“Delegation Facilities,” on page 2-106).

CSI level 2 also supports controls on the delegation of credentials. How to specify
these controls is not included in this specification. It is assumed that it is handled
administrative action. For example, it may be done by associating the delegation
controls with a user or an attribute set selected when the user logs on or selects
attributes at other times. Management of attributes associated with a principal is
considered out-of-scope of this specification.

No facilities are currently defined for an application object to specify controls it wish
to apply on delegating its credentials. In future, such facilities may be considered
CORBA Security - see Appendix F, Section F.13, “Advanced Delegation Features,”
page F-5.

3.1.15 Support for CORBA Security Facilities and Extensibility

This CSI specification assumes that the ORB conforms to at least CORBA Securi
mandatory facilities (except for delegation at CSI level 0), and requires that this
functionality can be supported across different ORBs using any of the CSI level
specified here.

The CORBA Security specification allows use of a wide range of security policies,
facilities, and mechanisms. Conformant ORBs can restrict which of these can be u
during interoperability, as follows:

• The protocol may not carry the privileges the target needs for some of its acces
policies. For example, at CSI levels 0 and 1 only an identity is supported.

• It may not carry the type of audit identity needed for the audit policy. For examp
it may not be able to carry an anonymousAuditId .
3-32 Security Service V1.5 May 2000



3

l 2

ponse

as

nts
ese

el
dent

of
y

to

ed
f

n for
• It may not support composite delegation. (CSI levels 0 and 1 do not; in CSI leve
it is not mandatory).

• There are restrictions on the SECIOP exchanges (e.g., separate request and res
protection is not supported).

• Unauthenticated users may not be supported (All CSI levels).

3.1.16 Security Replaceability for ORB Security Implementors

Security policy implementations could be replaced to provide new security policies
discussed in Section 2.5.3, “Replaceable Security Services,” on page 2-168.

This common Interoperability specification affects replaceability in two areas:

1. Mapping of attributes as described in Section 3.1.13, “Model for Use and Conte
of Credentials,” on page 3-26 affects replaceable security policies which use th
attributes.

2. Use of the Generic Security Services API (GSS-API) within theVault andSecurity
Context implementation objects described in Section 2.5.2, “Implementation-Lev
Security Object Interfaces,” on page 2-149, should make these objects indepen
of the particular security mechanisms used.

3.1.16.1 Attribute Mapping

As described in Section 3.1.13.3, “Attributes at the Target,” on page 3-28, the form
attributes may need to be mapped before being made available to a target securit
policy (AccessPolicy or AuditPolicy ) or to the target object.

No interface for an attribute mapper is currently defined; therefore, it is not possible
replace attribute mapping independently of the ORB/security mechanism. Such an
interface may be defined in the future.

3.1.16.2 Use of GSS-API

The choice of security mechanism is not visible outside theVault andSecurity
Context objects, except for the identification of theMechanism (and associated
cryptographic profiles) in theIOR and in theMechanismPolicy object (see
Section 2.3.6.2, “Client Side Invocation Policy Objects,” on page 2-87).

The Vault andSecurity Context can use GSS-API to implement their security
functions, and so remain independent of security mechanism.

If only CSI level 0 or 1 facilities are used, the standard GSS-API interface (as defin
in RFC 1508) can be used. If CSI level 2 facilities are needed, this requires use o
attributes other than the security name, and may also use delegation controls.
Therefore, it requires use of an extended GSS-API, such as [12].

Use of GSS-API is a recommendation, but is not proposed as a conformance optio
this CSI specification or for the CORBA Security specification.
Security Service V1.5 Security Interoperability Protocols May 2000 3-33



3

col

sage

ected
ed
pair

ation

ts to
n.
3.2 Secure Inter-ORB Protocol (SECIOP)

To provide a flexible means of securing interoperability between ORBs, a new proto
is introduced into the CORBA Interoperability Architecture. This protocol sits below
the GIOP protocol and provides a means of transmitting GIOP messages (or mes
fragments) securely.

Figure 3-4 Position of SECIOP Protocol

SECIOP messages support the establishment of Security Context objects and prot
message passing. Independence from GIOP allows the GIOP protocol to be revis
independently of SECIOP (e.g., to support request fragmentation). A synchronized
of Security Context objects and their corresponding sequencing state is called a
security association.

SECIOP is sub-layered into a Sequencing Layer and Context Management Layer.

Figure 3-5 Sublayers of SECIOP

This specification assumes that SECIOP provides services to the GIOP Fragment
Layer. Providing the interface to GIOP fragmentation is the SECIOP Sequencing
Layer. It has responsibility to securely and reliably deliver GIOP fragments to the
correspondent. It encapsulates GIOP fragments into frames for protection by the
SECIOP Context Management Layer. It also uses frames that do not carry fragmen
coordinate the distributed sequence number state bound to the security associatio
SECIOP frames are encoded in CDR and delivered to the SECIOP Context
Management Layer.

GIOP
fragmentation

SECIOP

IIOP

GIOP
fragmentation

SECIOP

IIOP

transport

GIOP

GIOP Fragmentation

SECIOP Sequencing Layer

SECIOP Context Management
Layer

Transport Data Protection
3-34 Security Service V1.5 May 2000



3

yer

n

ns

nt.
le

umes

is
alies.
sport

tion.

is
ayer
ber
The SECIOP Context Management Layer accepts frames from the Sequencing la
and encapsulates them in a Context Management message. These messages are
cryptographically protected by tokens, which are the product of the Data Protectio
layer, normally GSSAPI. The Context Management Layer carries Data Protection
tokens in SECIOP messages for the purpose of both managing security associatio
and for securing frames moving between it and the correspondent. The Context
Management layer uses the Transport layer to communicate with the corresponde
The Context Management layer is driven by the finite state machine defined in Tab
3-4 on page 3-48 and Table 3-5 on page 3-51.

3.2.1 Architectural Assumptions

SECIOP is designed to support a rich variety of different software implementation
architectures. In order to operate in the most sophisticated of these, the design ass
both clients and targets are multi-threaded and that a single TCP connection can
support multiple security associations.

Figure 3-6 Architectural Assumptions

This specification assumes the following environmental and implementation
characteristics:

• Each SECIOP secure association is bound to a single transport connection. Th
ensures that GIOP fragments are not reordered due to thread scheduling anom
It also guarantees that a response to a GIOP request returns on the same tran
connection as the request, which is required by the GIOP specification.

• SECIOP may use multiple security associations over the same transport connec
This allows implementations to multiplex SECIOP traffic, which can improve
performance.

• SECIOP ensures that fragments are sent over transport connections in their
sequence number order. This means that once an SECIOP sequence number
assigned to a fragment, the fragment will be processed by the Data Protection l
and sent over transport before any other fragment with a larger sequence num
protected by the same security association.

IIOP

SECIOP

...

IIOP

SECIOP

Multiple Security
Associations

TCP Connection

Thread Thread Thread Thread Thread Thread

...
Security Service V1.5 Secure Inter-ORB Protocol (SECIOP) May 2000 3-35



3

t are

since
as
es

ess
ation
This

the
a
lid

uld

2 the
card
the
in

efore
pace
ded

hin
vide
yers,

of
• When a transport connection is closed, all SECIOP secure associations using i
closed as well. This may require discarding fragments on the Sequencing layer
retransmission queue that have not yet been acknowledged. This is acceptable,
closing a transport connection forces GIOP to mark any outstanding Requests
MAYBE. Furthermore, closing a transport connection must be visible to both sid
of the connection, so both sides of the security association will follow this rule.

• There is always a listener at the client and server prepared to receive and proc
SECIOP messages. This is necessary, since the loss of security context inform
by one side or the other requires a re-establishment of the security association.
in turn requires both client and server to be listening for security context
management messages.

• Both the client and server may initiate security context establishment (i.e., send
EstablishContext message). This is necessary when a server needs to return
response to the client but discovers that the security association is no longer va
(e.g., it has timed out).

• SECIOP sequence numbers should never wrap around to zero. If they did, it wo
introduce a replay threat. Consequently, when the SECIOP Sequencing Layer
receives an acknowledgment to a fragment with a sequence number equal to 1/
precision of an unsigned long (the type used for sequence numbers), it must dis
the existing security association and establish a new one. This rule derives from
sequencing algorithm property that up to 1/2 of the possible sequence numbers
the higher 1/2 of the sequence number space may be used for new fragments b
the fragment associated with the last sequence number in the lower 1/2 of the s
is acknowledged. Note that the SECIOP sequencing state should not be discar
when a new security context is established.

• There is Data Protection protocol information (e.g., GSSAPI tokens) carried wit
SECIOP messages. This protocol should be configured so it does not itself pro
sequencing services. Otherwise, there could be interference between the two la
causing unnecessary lost service.

3.2.2 SECIOP Sequencing Layer

SECIOP sequencing uses a modified data link layer protocol based on one in
production at Lawrence Livermore National Laboratory for over 10 years. This
protocol, called modified ALP, is described below.

SECIOP Sequencing layer frames are carried inMessageInContext messages (see
Section 3.2.3.6, “Message Definitions,” on page 3-44). The
message_protection_token in this message is defined to be an opaque sequence
octets. In order to support sequencing, however, the Sequencing layer defines the
structure of these octets as follows (the definition ofMessageInContext is repeated
here for completeness):
3-36 Security Service V1.5 May 2000



3

in

e

er
tegy

d

iar

el,

s

struct MessageInContext {
ContextIdDefn message_context_id_defn;
TokenType message_protection_token_type;
ContextId message_context_id;
sequence<octet> message_protection_token;

};

message_protection_token is obtained by processing the frame header encoded
CDR as aSequencingHeader followed by the octets of the frame data. The
combination of frame header and frame data is called aSequencedDataFrame .

The frame_header field is always present in aSequencedDataFrame ; however,
the frame_data field may or may not be present. If not present, the length of the
MessageInContext message includes only the octets up to and including the fram
header.

The SequencingHeader has the following definition:

struct SequencingHeader {
octet control_state;
unsigned long direct_sequence_number;
unsigned long reverse_sequence_number;
unsigned long reverse_window;

};

The control_state field contains information necessary for the reliable delivery of
frame data between the correspondents. It is encoded as follows (control_state[x] is
bit x in the octet, where bit0 is the least significant bit):

control_state[0] : direct_phase
control_state[1] : direct_fragment
control_state[2] : direct_reply
control_state[3] : reverse_phase

3.2.2.1 Protocol State

The new version of SECIOP uses a variant of ALP (A Link Protocol) a data link lay
protocol. Its design relies on the principal of state-exchange, a coherent design stra
that produces protocols that are easy to understand, clearly documented, and len
themselves to rigorous analysis.

It is assumed that the reader is familiar with this link-layer protocol. Those unfamil
with it are referred to the paper [18].

The main body of this paper establishes the rationale for the state-exchange mod
while Appendix A documents the ALP protocol itself.

To embed ALP within SECIOP, each participant in a security association maintain
state used for sequencing. This state is embodied in several variables that the
participant manages as well as a queue of data fragments.
Security Service V1.5 Secure Inter-ORB Protocol (SECIOP) May 2000 3-37



3

ent.

e

These are:

In addition to these variables, the SECIOP Sequencing layer has available the
following functions and procedures:

output_queue A queue of fragments. SECIOP is responsible for
securely and reliably moving them to the
correspondent.

output_phase A boolean indicating a stream of transmissions.

output_sequence_number The sequence number associated with the oldest
fragment onoutput_queue .

output_count The number of fragments inoutput_queue that have
been transmitted but not yet accepted or rejected.

output_window The window size for output fragments.

output_length The length of theoutput_queue .

input_phase The phase expected with the next input fragment.

input_sequence_number The sequence number expected for the next fragm

input_window The window size for input fragments.

input_reply A boolean, which if set indicates at least one frame
should be sent.

receive() Returns a received frame.

newframe() Returns an empty frame buffer (i.e., a
SequencedDataFrame struct).

send(f) Sends the framef.

discard(f Discards the framef.

pop(q) Removes and discards the leading elementq[0] of the queueq.
The index of the remaining elements is decremented by one.

forward(d) Forwards the fragmentd to the GIOP fragmentation layer.

mod(n,m) Returns the remainder from the division of the integern by the
positive integerm.

min(n1,n2,..., nx) Returns the smallest of the integersn1 throughnx.

resync() Signals the SECIOP Context Management layer to discard th
old security association bound to the sequencing state and
establish a new one. [NB: this is not included in the original
ALP definition, since the notion of a security context is not
germane to its original purpose].

frame_data(f) Theframe_data field of aSequencedDataFrame message
f.
3-38 Security Service V1.5 May 2000



3

thms

ing
nd

e in
h a
first

e
so

tion,
ot

the
xt
Finally, the valueM is defined to be the number of values that can be carried by an
unsigned long .

3.2.2.2 Protocol Initialization

The next three sections describe the operation of the Sequencing layer. The algori
are expressed in a pseudo-ALGOL syntax (with slight modifications from the C
programming language to facilitate writing conditional expressions).

When the GIOP fragmentation layer requests the transport of a fragment to a
destination for which no SECIOP secure association exists, the SECIOP Sequenc
layer creates a state record consisting of the variables defined in the last section a
initializes them as follows:

output_queue:= empty;

output_phase:= 0;

output_sequence_number:= 0;

output_count:= 0;

output_window:= 0;

output_length:= 0;

input_phase:= 0;

input_sequence_number:= 0;

input_window:= [an implementation defined value < M/2 ];

input_reply:= 1;

In the original definition of ALP, the initial values of some of these variables was
unspecified. This specification defines these initial values so that there need be no
handshaking activity between the correspondent's SECIOP Sequencing layer cod
order to move the first fragment. This facilitates transaction style operations in whic
security association is established without mutual authentication, thus allowing the
fragment to be sent without waiting for an SECIOP reply.

Another slight change from the original definition of ALP is the requirement that th
window size must never be set greater than (M/2)-1. This restriction is necessary
that two acknowledgments carrying equal sequence numbers referring to different
fragments are never protected using the same security context. Without this restric
there is a hazard that an intruder could replay an acknowledgment to a fragment n
received, thereby causing the fragment to be dropped.

Once a security context is established, the SECIOP Sequencing layer processes
information in a SequencedDataFrame according to the algorithms given in the ne
two sections.
Security Service V1.5 Secure Inter-ORB Protocol (SECIOP) May 2000 3-39



3

it
d

IOP

s;

count

 M);

ts

ith

ity

the

nts
3.2.2.3 Upon Receipt of a SequencedDataFrame

Note –This text is taken directly from the cited paper and slightly modified to adapt
to using security contexts. The code that has been modified is called out by a soli
black line on the left side.

The receiver code below is called on both the target and client sides when the SEC
Finite State Machine (FSM) is in state S3 and aMessageInContext arrives.

begin comment This algorithm should be executed after receipt of each non-

erroneous frame;

f := receive();

if  direct_sequence_number(f) == input_sequence_number

and

   direct_phase(f) == input_phase

then

if  direct_fragment(f) == 1 and input_window > 0

then comment An input fragment has arrived in sequence. Accept it;

input_sequence_number := mod(input_sequence_number + 1, M);

forward(frame_data(f));

fi ;

elsecomment An input fragment has been lost. Prepare to accept retransmission

input_phase := 1 - direct_phase(f);

fi ;

if  mod(reverse_sequence_number(f)-output_sequence_number, M) <= output_

then comment The received reverse sequence number is not anomalous;

while reverse_sequence_number(f) != output_sequence_number

do comment Discard accepted output fragments;

pop(output_queue);

output_sequence_number := mod(output_sequence_number + 1,

if  mod(output_sequence_number, M/2) == 0

then comment all fragments up to and including (M/2)-1 have been

acknowledged. Use a new security context for future fragmen

to avoid replays. Resynchronizing the security context when

exactly half of the sequence number space has been “used”

achieves two objectives : 1) it ensures that no two fragments w

the same sequence number are protected by the same secur

context, and 2) it ensures that two acknowledgments carrying

same sequence  number, but acknowledging different fragme

are not protected using the same security context. The latter
3-40 Security Service V1.5 May 2000



3

yer
use
the
objective requires the further limitation that the window size is

never set greater than (M/2)-1;

resync();

fi ;

output_count := output_count - 1;

output_length := output_length - 1;

od;

output_window := reverse_window(f);

fi ;

if  reverse_phase(f) != output_phase

then comment Prepare to retransmit rejected output packets;

output_phase := reverse_phase(f);

output_sequence_number := reverse_sequence_number;

output_count := 0;

fi ;

if  direct_reply(f) == 1or output_length > 0

then comment State is unsatisfactory;

input_reply := 1;

fi ;

discard(f)

end;

3.2.2.4 Sending a SequencedDataFrame

This sending code is called on the target and client side when the Sequencing La
caller has a fragment to send. Certain events within the Sequencing layer also ca
this algorithm to be executed. Specifically, the sending algorithm is executed when
receiving code in the previous section is executed and a non-erroneous frame is
received. Also,input_reply should be set to 1 and the sending code executed:

1. when an erroneous frame is received;

2. when a new security context is established;

3. when anEstablishContext message is sent with messages allowed;

4. wheninput_window is changed by the implementation; and

5. upon initialization of the Sequencing state.

begin
Security Service V1.5 Secure Inter-ORB Protocol (SECIOP) May 2000 3-41



3

iation
cted

OP

is

s 1
while output_count < min(output_window, output_length)or input_reply == 1

do comment A frame should be sent;

f := newframe();

input_reply := 0;

direct_phase(f) := output_phase;

direct_sequence_number(f) := mod(output_sequence_number +

output_count, M);

if  output_count < min(output_window, output_length)

then comment A fragment could be included in the frame.

direct_fragment(f) := 1;

frame_data(f) := output_queue[output_count];

output_count := output_count + 1;

fi ;

if  output_length > 0)

then comment Not all packets have as yet been accepted;

direct_reply(f) := 1

fi ;

reverse_phase(f) := input_phase;
reverse_sequence_number(f) := output_sequence_number;
reverse_window(f) := output_window;
send(f);

od

end

3.2.3 SECIOP Context Management Layer

The SECIOP Context Management Layer establishes and controls a secure assoc
between a client and target. It also provides a means for the transmission of prote
messages between clients and targets.

3.2.3.1 SECIOP Context Management Layer Message Header

SECIOP Context Management messages share a common header format with GI
messages defined in theCommon Object Request Broker: Architecture and
Specification. The fields of this header have the following definition.

• magic - identifies the protocol of the message. Each protocol (GIOP, SECIOP)
allocated a unique identifier by the OMG. The value for SECIOP is “SECP.”

• protocol_version - this contains the major and minor protocol versions of the
protocol identified by magic. The value for the version of SECIOP defined here i
major version, 1 minor version. This field is calledGIOP_version in
GIOP::MessageHeader_1_1 .
3-42 Security Service V1.5 May 2000



3

sages
n the
age).

ge.
d

i.e.,
for
• byte_order - as in the GIOP header definition.

• message_type - this is the protocol specific identifier for the message.

• message_size - as in the GIOP header definition.

3.2.3.2 SECIOP Context Management Layer Protocol

Where possible, SECIOP Context Management messages are sent with GIOP mes
rather than as separate exchanges. However this is not always possible (e.g., whe
client wishes to authenticate the target before it is prepared to send a GIOP mess

The SECIOP Context Management Layer has the following message types:

module SECIOP
enum MsgType {

MTEstablishContext, MTCompleteEstablishContext,
MTContinueEstablishContext, MTDiscardContext,
MTMessageError, MTMessageInContext

};

typedef unsigned long long ContextId;

enum ContextIdDefn {
CIDClient,
CIDPeer,
CIDSender

};

enum ContextTokenType {
SecTokenTypeWrap,
SecTokenTypeMIC

};
};

3.2.3.3 ContextId

This type is used to define the identifiers allocated by the client and target for the
association.

3.2.3.4 ContextIdDefn

This enum is used to define the kind of context identifier held in an SECIOP messa
The context identifier will either be the one specified by the client which establishe
the context or it will be the identifier associated with the receiver of the message (
the request target for request or request fragment messages or the request client
reply or reply fragment messages). The value must equal Client if the value of
target_context_id_valid in the CompleteEstablishContext was false or the
message has not yet been exchanged. It must equal Peer if the value of
Security Service V1.5 Secure Inter-ORB Protocol (SECIOP) May 2000 3-43



3

rity

ed

e

tion.

ifier
ext.
h to

xt. It
target_context_id_valid in the CompleteEstablishContext was true. The use of
peer identifiers allows the recipient of the message to more efficiently find its secu
context. The values are defined as:

• CIDClient - the context id is that of the association’s client.

• CIDPeer - the context id is that of the recipient of the message.

• CIDSender - the context id is that of the sender of the message. This is only us
with the DiscardContext message when the sender of theDiscardContext
message has no context and has received a message which it cannot process.

3.2.3.5 TokenType

This type is used to indicate the type ofmessage_protection_token carried by a
MessageInContext message. The valueSecTokenTypeWrap indicates the token
was returned by aGSS_Wrap() call, while the valueSecTokenTypeMIC indicates
the token was returned by aGSS_GetMIC() call.

3.2.3.6 Message Definitions

EstablishContext

This message is passed by the client to the target when a new association is to b
established. Its definition is:

struct EstablishContext {
ContextId client_context_id;
sequence <octet> initial_context_token;

};

• client_context_id - this is the client’s identifier for the security association. It is
passed by the target to the client with subsequent messages within the associa
It enables the client to link the message with the appropriate security context.

• initial_context_token - this is the token required by the target to establish the
security association. It contains a mechanism version number, mech type ident
and mechanism specific information required by the target to establish the cont
It may be sent with a protected message (for example if the client does not wis
authenticate the target).

CompleteEstablishContext

This message is returned by the target to indicate that the association has been
established. It is sent as a reply to an establish context or continue establish conte
may be sent with a GIOP reply or reply fragment. Its definition is:
3-44 Security Service V1.5 May 2000



3

the

e a
ly.

onse

as
not
le
struct CompleteEstablishContext {
ContextId client_context_id;
boolean target_context_id_valid;
ContextId target_context_id;
sequence <octet> final_context_token;

};

• client_context_id - this is the client’s identifier for the security association. It is
returned by the target to the client to enable the client to link the message with
appropriate security context.

• target_context_id_valid - this indicates whether the target has supplied a
target_context_id for use by the client. True indicates that the following field is
valid.

• target_context_id - the targets identifier for the association. It is passed by the
client to the target with subsequent messages. It enables the target to associat
local identifier with the context to allow the target to identify the context efficient

• final_context_token - this is the token required by the client to complete the
establishment of the security association. It may be zero length.

ContinueEstablishContext

This message is used by the client or target during context establishment to pass
further messages to its peer as part of establishing the context. It may be the resp
to an establish context or to another continue establish context. It is defined as:

struct ContinueEstablishContext {
ContextId client_context_id;
sequence <octet> continuation_context_token;

};

• client_context_id - the client’s identifier for the association. It is used by both
client and target to identify the association during the establishment sequence.

• continuation_context_token - this is the security information required to
continue establishment of the security association.

DiscardContext

This message is used to indicate to the receiver that the sender of the message h
discarded the identified context. Once the message has been sent the sender will
send further messages within the context. The message is used as a hint to enab
contexts to be closed tidily. Its definition is:

struct DiscardContext {
ContextIdDefn message_context_id_defn;
ContextId message_context_id;
sequence <octet> discard_context_token;

};

• message_context_id_defn - the type of context identifier supplied in the
message_context_id field.
Security Service V1.5 Secure Inter-ORB Protocol (SECIOP) May 2000 3-45



3

nt’s
pe

e

• message_context_id - the context identifier to be used by the recipient of the
message to identify the context to which the message applies.

• discard_context_token - optional token provided by the sender to assist the
receiver in cleaning up its security context state.

MessageError

This message is used to indicate an error detected in attempting to establish an
association either due to a message protocol error or a context creation error. The
message is also used to indicate errors in use of the context.

struct MessageError {
ContextIdDefn message_context_id_defn;
ContextId message_context_id;
long major_status;
long minor_status;

};

• message_context_id_defn - the type of context identifier supplied in the
message_context_id field.

• message_context_id - the context identifier to be used by the recipient of the
message to identify the context to which the message applies. It is either the clie
identifier for the context (type client) or the receiver of the messages identifier (ty
peer).

• major_status - the reason for rejecting the context. The values used are those
defined by the GSS API (RFC 1508) for fatal error codes.

• minor_status - this field allows mechanism specific error status to further defin
the reason for rejecting the context. It is not defined further here.

MessageInContext

Once established messages are sent within the context using theMessageInContext
message. Its definition is:

struct MessageInContext {
ContextIdDefn message_context_id_defn;
TokenType message_protection_token_type;
ContextId message_context_id;
sequence <octet> message_protection_token;

};

• message_context_id_defn - the type of context identifier supplied in the
message_context_id field.

• message_protection_token_type - indicates whether the
message_protection_token is aSecTokenTypeWrap or SecTokenTypeMIC
token.

• message_context_id - the context identifier to be used by the recipient of the
message to identify the context to which the message applies.
3-46 Security Service V1.5 May 2000



3

e is

.e.
sage
e

s for
bles

age

ith
out

be
• message_protection_token - the sign or seal token for the message. This is a
self defining token which indicates how the message is protected. If the messag
not protected the token will be zero length.

For signed and unprotected messages, theMessageInContext message is followed
by the higher level protocol message being transmitted within a security context (i
GIOP message or message fragment). The length of the higher level protocol mes
is included in the length of theMessageInContext message. For sealed messages th
length of the higher level protocol message is zero.

3.2.4 SECIOP Context Management Finite State Machine Tables

Table 3-4 on page 3-48 and Table 3-5 on page 3-51 present the state transition rule
the Context Management Layer of SECIOP. The state transitions given in these ta
are intended to operate in an environment satisfying the following assumptions:

• Each FSM is associated with a unique pair of principals. When an SECIOP mess
arrives it is delivered to the FSM associated with the principal from which the
message was sent and to which the message is delivered.

• There always exists a sequencing state machine (SSM) in the initialized state w
an FSM in state 0 at each end of a TCP connection for those principal pairs with
an active SSM/FSM.

• Each SSM is associated with exactly one FSM at a time, although an SSM may
associated with multiple FSMs during its lifetime.

• Each TCP connection can be associated with multiple SSMs.

• Each FSM is associated with exactly oneContextId during its lifetime.

3.2.4.1 SECIOP Context Management Protocol State Tables

Note that some mechanisms may start in state S3.
Security Service V1.5 Secure Inter-ORB Protocol (SECIOP) May 2000 3-47



3

Table 3-4 SECIOP Context Management Finite State Machine -Table 1

Event No Association (S0) Association being
created, message
allowed (S1)

Association being
created, message
not allowed (S2)

Association exists (S3)

EstablishContext
arrives

If  create context = OK
& context complete,
Send CompleteEstab-
lishContext.
input_reply := 1.
Execute send algo-
rithm.
S3.
Else if create context =
OK & context incom-
plete.
Send ContinueEstab-
lishContext.
S2.
Else
Send MessageError.
Terminate SSM.
Terminate.

[Target sent Estab-
lishContext at
same time Client
did. Client’s has
precedence]
S1.

[Target sent Estab-
lishContext at
same time Client
did. Client’s has
precedence]
S2.

[Target discarded context
without telling client]
Create a new FSM in state
S0.
Deliver EstablishContext
message to it.
Terminate.

CompleteEstab-
lishContext arrives

[A CompleteEstablish-
Context arriving in S0
is illegal]
Send MessageError.
Terminate SSM.
Terminate

Complete context
with target’s con-
text id.
If  OK,
S3.
Else,
send MessageEr-
ror.
Terminate SSM.
Terminate

Complete context
with target’s con-
text id.
If  OK,
input_reply := 1.
Execute send algo-
rithm.
S3.
Else,
send MessageEr-
ror.
Terminate SSM.
Terminate

[A CompleteEstablish-
Context arriving in S3 is
illegal]
Send MessageError.
Terminate SSM.
Terminate
3-48 Security Service V1.5 May 2000



3

ContinueEstablish-
Context arrives

[A ContinueEstablish-
Context arriving in S0
is illegal]
Send MessageError.
Terminate SSM.
Terminate

[A ContinueEstab-
lishContext arriv-
ing in S1 is illegal]
Send MessageEr-
ror.
Terminate SSM.
Terminate

update context
state.
If  OK & context
complete,
Send CompleteEs-
tablishContext.
input_reply := 1.
Execute send algo-
rithm.
S3.
Else If OK & con-
text incomplete,
Send ContinueEs-
tablishContext.
S2.
Else,
Send MessageEr-
ror.
Terminate SSM.
Terminate

[A ContinueEstablish-
Context arriving in S3 is
illegal]
Send MessageError.
Terminate SSM.
Terminate

MessageError
arrives

[A MessageError arriv-
ing in S0 is illegal]
Terminate SSM.
Terminate

Terminate SSM.
Terminate

Terminate SSM.
Terminate

[target had trouble using
its security context and
couldn’t reestablish it]
Terminate SSM.
Terminate.

Send Frame

[Normal send
case.]

If  create context = OK,
     Send EstablishCon-
text
     message.

If   Message allowed,
        Send the frame.
        S1.
    Else
        S2.
Else
Terminate SSM.
Terminate

Send the frame.
S1.

S2. If  context valid,
Send the frame.
S3.
Else
Create a new FSM in state
S0.
Attach it to SSM.
Deliver SendFrame to
FSM
Terminate

Table 3-4 SECIOP Context Management Finite State Machine -Table 1(Continued)

Event No Association (S0) Association being
created, message
allowed (S1)

Association being
created, message
not allowed (S2)

Association exists (S3)
Security Service V1.5 Secure Inter-ORB Protocol (SECIOP) May 2000 3-49



3

MessageInContext
arrives

[Normal receive
case.]

[Client  has discarded
context, but target
doesn’t know it.]
Send DiscardContext.
S0

[MessageInCon-
text arriving in
state S1 is illegal]]
Send MessageEr-
ror.
Terminate SSM.
Terminate

[MessageInCon-
text arriving in
state S2 is illegal]]
Send MessageEr-
ror.
Terminate SSM.
Terminate

If  message OK,
Execute receive algo-
rithm.
Else If context timed out,
Send DiscardContext.
Create a new FSM in state
S0.
Attach it to SSM.
input_reply := 1.
Execute send algorithm.
Terminate.
Else If message bad, but
context OK, drop mes-
sage.
input_reply := 1.
Execute send algorithm.
Else
Send MessageError.
Terminate SSM.
Terminate.

DiscardContext
arrives

[ignore]
S0

[Target doesn’t
want to create a
security associa-
tion]
Terminate SSM.
Terminate

[Target doesn’t
want to create a
security associa-
tion]
Terminate SSM.
Terminate

[target’s context is no
longer valid]
Create a new FSM in state
S0.
Attach it to SSM.
input_reply := 1.
Execute send algorithm.
Terminate.

Resync Requested [ignore. Resync will
occur on next Send-
Frame request]
S0

Terminate SSM.
Terminate

Terminate SSM.
Terminate

Send DiscardContext.
Create a new FSM in state
S0.
Attach it to SSM.
Execute send algorithm.
Terminate.

Table 3-4 SECIOP Context Management Finite State Machine -Table 1(Continued)

Event No Association (S0) Association being
created, message
allowed (S1)

Association being
created, message
not allowed (S2)

Association exists (S3)
3-50 Security Service V1.5 May 2000



3

Table 3-5 SECIOP Context Management Finite State Machine - Table 2

Event No Association (S0) Association being
created, message
allowed (S1)

Association being
created, message
not allowed (S2)

Association exists (S3)

EstablishContext
arrives

If  create context = OK
& context complete,
Send CompleteEstab-
lishContext.
input_reply := 1.
Execute send algo-
rithm.
S3.
Else if create context =
OK & context incom-
plete,
Send ContinueEstab-
lishContext.
S2.
Else
Send MessageError.
Terminate SSM.
Terminate

[illegal state at Target
Side]

[Client wants to
start over. Always
allow this.]
discard partial con-
text.
Create a new FSM
in state S0.
Deliver Establish-
Context frame to it.
Terminate.

[Client discarded con-
text without telling tar-
get.]
Create a new FSM in
state S0.
Deliver EstablishCon-
text frame to it.
Terminate.

CompleteEstab-
lishContext arrives

[A CompleteEstablish-
Context arriving in S0
is illegal]
 Send MessageError.
Terminate SSM.
Terminate

[illegal state at Target
Side]

Complete context
with context id.
If  OK,
input_reply := 1.
Execute send algo-
rithm.
S3.
Else,
send MessageEr-
ror.
Terminate SSM.
Terminate

[A CompleteEstablish-
Context arriving in S3
is illegal]
Send MessageError.
Terminate SSM.
Terminate
Security Service V1.5 Secure Inter-ORB Protocol (SECIOP) May 2000 3-51



3

ContinueEstablish-
Context arrives

A ContinueEstablish-
Context arriving in S0
is illegal]
Send MessageError.
Terminate SSM.
Terminate

[illegal state at Target
Side]

update context
state.
If  OK & context
complete,
Send CompleteEs-
tablishContext.
input_reply := 1.
Execute send algo-
rithm.
S3.
Else If OK & con-
text incomplete,
Send ContinueEs-
tablishContext.
S2.
Else,
Send MessageEr-
ror.
Terminate SSM.
Terminate

[A ContinueEstablish-
Context arriving in S3
is illegal]
Send MessageError.
Terminate SSM.
Terminate

MessageError
arrives

[A MessageErrort arriv-
ing in S0 is illegal]
Terminate SSM.
Terminate

[illegal state at Target
Side]

Terminate SSM.
Terminate

[target had trouble
using its security con-
text and couldn’t rees-
tablish it]
Terminate SSM.
Terminate.

Send Frame

[Normal send
case.]

If  create context = OK,
Send EstablishContext
message.
S2.
Else
Terminate SSM.
Terminate

[illegal state at Target
Side]

S2. If  context valid
Send the frame (if not
already sent).
S3.
ElseCreate a new FSM
in state S0.
Attach it to SSM.
Deliver SendFrame to
FSM
Terminate.

Table 3-5 SECIOP Context Management Finite State Machine - Table 2(Continued)

Event No Association (S0) Association being
created, message
allowed (S1)

Association being
created, message
not allowed (S2)

Association exists (S3)
3-52 Security Service V1.5 May 2000



3

MessageInContext
arrives

[Normal receive
case.]

[Target has discarded
context, but client
doesn’t know it.]
Send DiscardContext.
S0

[illegal state at Target
Side]

[MessageInCon-
text arriving in
state S2 is illegal]]
Send MessageEr-
ror.
Terminate SSM.
Terminate

If  message OK,
Execute receive algo-
rithm.
Else If context timed
out,
Send DiscardContext.
Create a new FSM in
state S0
Attach it to SSM.
input_reply := 1.
Execute send algo-
rithm.
Terminate
Else If message bad,
but context OK, drop
message.
input_reply := 1.
Execute send algo-
rithm.
Else
Send MessageError.
Terminate SSM.
Terminate

DiscardContext
arrives

[ignore]
S0

[illegal state at Target
Side]

[Client doesn’t
want to create a
security associa-
tion]
Terminate SSM.
Terminate

[client’s context is no
longer valid.]
Create a new FSM in
state S0.
Attach it to SSM.
input_reply := 1.
Execute send algo-
rithm.
Terminate.

Resync Requested [ignore. Resync will
occur on next Send-
Frame request]
S0

[illegal state at Target
Side]

Terminate SSM.
Terminate

Send DiscardContext.
Create a new FSM in
state S0.
Attach it to SSM.
Execute send algo-
rithm.
Terminate.

Table 3-5 SECIOP Context Management Finite State Machine - Table 2(Continued)

Event No Association (S0) Association being
created, message
allowed (S1)

Association being
created, message
not allowed (S2)

Association exists (S3)
Security Service V1.5 Secure Inter-ORB Protocol (SECIOP) May 2000 3-53



3

of

s

ublic

) are

2

PI

n
ther

y
.

e

of

ust
3.3 The SECIOP Hosted CSI Protocols

All the SECIOP hosted Common Secure Interoperable (CSI) protocols and
mechanisms use common elements as far as possible.

• All mechanisms use IOR tags of the formTAG_x_SEC_MECH as defined in
Section 3.1.4.1, “Security Components of the IOR,” on page 3-8.

• The component data structure associated with these tags is common for all
protocols and mechanisms in this specification.

• Cryptographic profiles are defined in all cases which allow use of relevant
algorithms for confidentiality, integrity, etc. Different mechanisms support some
the same algorithms and one way functions.

• The MechanismType as seen at the IDL interface also reflect the mechanism id
and cryptographic profile values in theIOR tags.

• Privilege attributes when CSI level 2 is used are the same whether a secret or p
key mechanism is used.

• The basic SECIOP token format and some details (such as token types and ids
common for all protocols.

• All tag components must be encapsulated using CDR encoding.

These protocols are designed to allow use of GSS-API mechanisms. Use of level
facilities such as handling of privileges, as defined in Appendix B, Section B.11,
“Values for Standard Data Types,” on page B-26, imply use of an extended GSS-A
such as [23].

3.3.1 IOR

The IORTAG_INTERNET_IOP profile contains the security tags needed for commo
secure interoperability using GIOP/IIOP. These security tags may be shared with o
(non IIOP) protocols, including DCE-CIOP.

The security tags describe what the security target supports and requires, and an
mechanism specific data required for secure interoperability using this mechanism

For common secure interoperability and for all CSI mechanisms and protocols, th
IOR must contain at least one appropriateTAG_x_SEC_MECH tag.

The IOR may also contain the following tags, as defined in “Security Components
the IOR” on page 3-8:

• TAG_SEC_NAME provides the security name and may be shared between
mechanisms which use the same form of name. Conformant implementation m
be able to accept security names shared between such mechanisms.

• TAG_ASSOCIATION_OPTIONS may be shared between mechanisms.

• TAG_GENERIC_SEC_MECH whose component definition includes asequence
<TaggedComponents> includes asecurity_mechanism_type and can include
a security name and association options.
3-54 Security Service V1.5 May 2000



3

iation
el. If
these

ust
A

If a mechanism is selected for use, and has a defined security name and/or assoc
option, these values are used in preference to any values defined at the higher lev
no name or association options are defined for the mechanism, then the values of
tags in the IIOP profile are used.

3.3.2 Mechanism Tags

The TAG_x_SEC_MECH tags for all the CSI mechanisms defined in this
specification have an associated component data structure of the same form:

struct <mechanism name> {
AssociationOptions target_supports;
AssociationOptions target_requires;
sequence <CryptographicProfile> crypto_profiles;
sequence <octet> security_name;

};

Names for the CSI mechanisms are:

SPKM_1
SPKM_2
KerberosV5
CSI_ECMA_Secret
CSI_ECMA_Hybrid
CSI_ECMA_Public

Tag ids for the mechanisms are:

TAG_SPKM_1_SEC_MECH
TAG_SPKM_2_SEC_MECH
TAG_KerberosV5_SEC_MECH
TAG_CSI_ECMA_Secret_SEC_MECH
TAG_CSI_ECMA_Hybrid_SEC_MECH
TAG_CSI_ECMA_Public_SEC_MECH

• The association options required/supported by the target are defined in
Section 3.3.3, “Association Options,” on page 3-55.

• The sequence ofcrypto_profiles defines one or more cryptographic profile
supported by this target using this mechanism as defined in Section 3.3.4,
“Cryptographic Profiles,” on page 3-56.

• The security name is defined in Section 3.3.5, “Security Name,” on page 3-57.

3.3.3 Association Options

With all CSI protocols and mechanisms, a secure ORB supporting a target object m
be able to put in the IOR any or all of the association options defined in the CORB
Security specification, as required by the target.
Security Service V1.5 The SECIOP Hosted CSI Protocols May 2000 3-55



3

a

re
will
ture
pted
s not

),

sed

w
phy

se
ey
he

rity
All compliant secure ORBs supporting clients must be able to accept all the
target_supports and target_requires association options, and act on these
correctly, as defined in “TAG_ASSOCIATION_OPTIONS” on page 3-9.

Two of the association options are replay and misordering detection. While all the
protocols in this specification include facilities to detect replay and misordering, in
multi-threading CORBA environment, the calls on the security mechanism are not
guaranteed to be made in the same order that the messages they are protecting a
transmitted. The facilities in the security mechanisms cannot guarantee that they
correctly detect replay and misordering. An extension to SECIOP is expected in fu
to provide these checks. Until this change to SECIOP has been specified and ado
(although these association options may be set) replay and misordering detection i
a mandatory part of this specification.

If no association options are specified in theIOR, a CSI defined default is assumed.

3.3.4 Cryptographic Profiles

Cryptographic algorithms are used for

• integrity and confidentiality protection of messages,

• establishing the security association between client and target (including peer
authentication and establishing session keys),

• deriving dialogue keys for message protection (both confidentiality and integrity
and

• protecting systems security data such asPACs (Privilege Attribute Certificates).

The security mechanisms defined here allow a choice of algorithms which can be u
for the different functions, depending on

• the needs of the functions, and

• the requirements for international deployment in countries which constrain ho
cryptography can be used and exported from countries where use of cryptogra
is controlled.

In some cases, export controls may require international versions of products to u
shorter key lengths; therefore, a large number of combinations of algorithms and k
lengths may be possible. For interoperability, both client and target must support t
same algorithms and key lengths for these functions.

This specification defines a number ofcryptographic profiles, where each profile
identifies a set of algorithms with specified key lengths used by a mechanism for
specified functions.

For example, the CSI-ECMA protocol defines aNoDataConfidentiality
cryptographic profile which can use DES and RSA for protecting the security
mechanism, but does not encrypt the ORB request/reply. (The profile for full secu
would use DES/64 for data confidentiality.)

Cryptographic profiles are identified by a value, represented inIORs as an unsigned
short:
3-56 Security Service V1.5 May 2000



3

l,

ame

he
.

but

ier
s its

ple,
the

nt in
typedef unsigned short CryptographicProfile;

3.3.4.1 Key Establishment Algorithms

The algorithms used to establish the cryptographic session keys during security
associations depend on the type of mechanism.

• Where the secret key (Kerberos based) mechanism is used, either via the GSS
Kerberos or CSI-ECMA protocol, the DES algorithm is used.

• When a public key mechanism is used, either via SPKM or CSI-ECMA protoco
the RSA algorithm is used.

3.3.4.2 Common Message Protection Algorithms

Even if different mechanisms and algorithms are used for key establishment, the s
algorithms can be used for message protection.

• All CSI mechanisms have cryptographic profiles which include an MD5 hash of t
data for integrity, though the hash, in some profiles may be signed or encrypted

• All CSI mechanisms can use DES in CBC mode for message confidentiality.

3.3.4.3 Cryptographic Profiles Supported by CSI Protocols

A number of cryptographic profiles are defined for each CSI protocol. Further
cryptographic profiles using different algorithms can be used with these protocols,
these are not part of this interoperability standard. A target may support several
cryptographic profiles for a particular mechanism.

In all cases, support of a CSI protocol requires support for a cryptographic profile
which provides integrity of user data, but not confidentiality, as such a profile is eas
to deploy internationally. For example, the GSS Kerberos protocol always support
MD5 cryptographic profile. Other profiles may also be supported.

3.3.5 Security Name

The form of the security name depends on the security mechanism used. For exam
it can be a Kerberos name or a Directory style name. Directory names conform to
string representation defined in [4].

The security name may be at the component level of theIOR or higher if shared
between mechanisms. If a security mechanism tag, but no security name is prese
the IOR, the IOR is improperly formatted and aCORBA::INV_OBJREF exception
shall be raised when theIOR is used to specify the target of an operation.
Security Service V1.5 The SECIOP Hosted CSI Protocols May 2000 3-57



3

set
nd

ther
d

in
(The
ay

eros

ent

el

rm

on.

ith
d
et of
3.3.6 Security Administration Domains

As defined in Section 2.1.8, “Domains,” on page 2-21, a security policy domain is a
of objects to which a security policy applies for a set of security related activities a
is administered by a security authority.

Security mechanisms are concerned with the security domains where users and o
principals are administered, often by on-line authorities such as Authentication an
Privilege Attribute Services. Often, this domain will be the enclosing domain
encompassing secure invocation, access control, and other policy domains.

Note that some authorities may be off-line. For example, the Certification Authority
used to issue certificates is often off-line.

The security mechanisms specified in this document allow requests to cross doma
boundaries. At the boundary, trust between the domains needs to be established.
way this is done depends on the mechanism used.) Also, the scope of privileges m
not always cross the domain boundary. This specification does not define how
privileges are mapped on crossing domain boundaries, as this does not affect the
protocol.

While all security mechanisms here include the concept of such domains, in Kerb
(used here as the secret key mechanism) these are known as realms. In this
specification, the term realm is used in tokens using this mechanism.

3.3.7 Mapping of Common Elements to the SECIOP Protocol

The SECIOP protocol includes the tokens for context establishment and managem
and per message tokens.

The context establishment tokens contain:

• Information associated with a principal, including at least an identity. (At CSI Lev
2, there may be a range of privileges and a separate audit identity, if required.)

• Associated delegation information. Only simple delegation is mandatory to confo
to this specification.

• Security information used to establish the client-target object security associati

• Security information used to establish the keys for message protection.

3.3.7.1 Basic Token Format

SECIOP messages include context and message protection tokens.

All CSI mechanisms are usable inside and outside the object environment. In line w
standard practice outside the object environment, tokens are defined in ASN.1. an
encoded for transmission using BER (in some cases, constrained to the DER subs
these). The token appears as asequence<octet> in CDR encoded SECIOP
messages.
3-58 Security Service V1.5 May 2000



3

CSI
the

cols
ip
These tokens are enclosed within framing as follows:

[APPLICATION 0] IMPLICIT SEQUENCE {
thisMech   MechType

-- MechType is OBJECT IDENTIFIER
innerContextToken ANY DEFINED BY thisMech

-- contents mechanism-specific;
}

Note – For conformance to GSS-API, only the initial context token has to use this
token framing; however, in the CSI protocols, it applies to all tokens.

The initial context token should include a mechanism version, as well as type. For
mechanisms, version numbers are in the mechanism specific information such as
Kerberos ticket or CSI-ECMAPAC.

3.3.7.2 Inner Context Tokens

The same token types are used in the different CSI protocols, though not all proto
support all token types. The token types are defined below showing the relationsh
with GSS-API calls, as all CSI protocols can be implemented using GSS-API.

The inner context tokens used for security association establishment are:

The inner context token for message protection is themessage_protection_token
in the SECIOPMessageInContext message. This can take one of the following
forms:

InitialContextToken Sent by the initiator to a target, to start establishment of a security
association in an SECIOPEstablishContext message. The token id
is 01 00 (hex) . If GSS-API is being used, it is the value returned by
the GSS_Init_sec_context call.

TargetResultToken Sent to the initiator by the target to complete establishment of the
context in an SECIOPCompleteEstablishContext message. The
token id is02 00 (hex) . It is returned byGSS_Accept_sec_context .

ContinueEstablishToken Sent either by the initiator or the target to continue context
establishment in an SECIOPContinueEstablishContext message.
The token id is03 00 (hex) (in SPKM) It is returned by either the
GSS_Init_sec_context call or theGSS_Accept_sec_context call.

ErrorToken Sent on detection of an error during security association
establishment in an SECIOPCompleteEstablishContext or
ContinueEstablishContext message. The token id is03 00 (hex)
(except in SPKM where it is04 00 (hex)). It is returned by either the
GSS_Init_sec_context call or theGSS_Accept_sec_context call.
Security Service V1.5 The SECIOP Hosted CSI Protocols May 2000 3-59



3

d in

, and

in
n

are
f

SI-

t

This specification always usesMIC tokens for integrity andWrap tokens for
confidentiality. This may ease national use and export problems where onlyMIC
tokens are supported.

The inner context token in theDiscardContext SECIOP message may optionally
contain aDeleteContextToken .

3.3.8 CSI Protocols

This specification includes three protocols for different circumstances, as describe
Section 3.1.6, “Key Distribution Types,” on page 3-13.

In all cases, the appropriate section specifies the cryptographic profiles supported
the contents of the SECIOP security tokens.

In all cases, the protocol as supported by OMG is a subset of the protocol defined
the source document. For example, in all protocols, channel bindings as defined i
GSS-API (and specified in the underlying protocols) are not supported. This is
because IP addresses cannot be trusted in current implementations; IP addresses
spoofable. Including the channel binding information would lead to a false sense o
security about the source of the transmission.

The protocols described in this specification include SPKM, GSS Kerberos, and C
ECMA.

3.3.8.1 SPKM Protocol

The SPKM protocol supports CSI level 0. This is a public key based protocol. The
only client information transmitted is its security name. See Section 3.4, “SPKM
Protocol,” on page 3-61.

MICToken Sent either by the initiator or the target to verify the integrity
of the user data sent in the following GIOP message (or
message fragment). The token id is01 01 (hex) It is returned
by GSS_GetMIC.

WrapToken Sent either by the initiator or the target. Encapsulates the inpu
user data (optionally encrypted) along with integrity check
values. The token id is02 01 (hex) . It is returned by
GSS_Wrap .

ContextDeleteToken Sent either by the initiator, or the target in an SECIOP
DiscardContext message to release a Security
Association. It is returned by
GSS_Delete_sec_context .
3-60 Security Service V1.5 May 2000



3

col.

ree

. The

te
er

nds

ism

. It

he

le

ity
3.3.8.2 GSS Kerberos Protocol

The GSS Kerberos protocol supports CSI level 1. This is a secret key based proto
The only client information transmitted is its security name. See Section 3.5, “GSS
Kerberos Protocol,” on page 3-64.

3.3.8.3 CSI-ECMA Protocol

The CSI-ECMA protocol also supports the privilege handling, separateAuditid , and
delegation controls of CSI level 2. Subschemes within this protocol support the th
key distribution options: secret, public, and hybrid. See Section 3.6, “CSI-ECMA
Protocol,” on page 3-67 for additional information.

To support this flexibility, theinitial_context_token is split into three parts;
therefore, the attributes for access control are independent of the key distribution
method, and this is independent of the cryptography used for message protection
token contains:

• Authorization information - attributes of a principal are held in a Privilege Attribu
Certificate (PAC) with any associated information needed for delegation and oth
controls. This is independent of the way the communications are protected;
therefore, it is usable with different key distribution methods.

• Security information needed to establish the association. The form of this depe
on the key distribution method used. It is a Kerberos ticket if this is secret key
based; it is a profile of theSPKM_REQ token for public key mechanisms. In both
cases, there is a link between this and the PAC. Changing the security mechan
mainly just requires replacing this part of the token.

• Dialogue key packages to establish confidentiality and integrity keys.

3.4 SPKM Protocol

This section specifies the SPKM protocol, a simple public-key GSS-API mechanism
is based on SPKM as defined in [20]. SPKM protocol provides CSI level 0
functionality only and the purpose is to allow the adoption of a simple security
infrastructure without undue complexity or overhead.

SPKM has two separate GSS-API mechanisms,SPKM_1 andSPKM_2, whose
primary difference is thatSPKM_2 requires the presence of secure timestamps for t
purpose of replay detection during context establishment andSPKM_1 does not.
SPKM_1 is the mandatory mechanism for conformance to the SPKM protocol whi
SPKM_2 is the optional mechanism.

Specifically, it defines the required information for encoding a secure interoperabil
IOR and defines the token formats used by the SECIOP protocol.

3.4.1 Cryptographic Profiles

The following cryptographic profiles are supported with this mechanism:
Security Service V1.5 SPKM Protocol May 2000 3-61



3

y

ng
nt

ng

tion

ith
3.4.1.1 MD5_RSA

Specifies use of the SPKM mechanism to provide data integrity and authenticity b
computing anRSA signature on theMD5 hash of that data. The default SPKM key
establishment algorithm is used (i.e., the context key is generated by the initiator,
encrypted with theRSA public key of the target, and sent to the target). Note that
MD5_RSA is a mandatory integrity and authenticity algorithm for SPKM.

3.4.1.2 MD5_DES_CBC

Specifies use of the SPKM mechanism to provide data integrity by encrypting, usi
DES in CBC mode, theMD5 hash of that data. The default SPKM key establishme
algorithm is used.

3.4.1.3 DES_CBC

Specifies use of the SPKM mechanism to provide data confidentiality by usingDES in
CBC mode. The default key establishment algorithm is used.

3.4.1.4 MD5_DES_CBC_SOURCE

Specifies use of the SPKM mechanism to provide data integrity by encrypting, usi
DES in CBC mode, theMD5 hash of that data. The default key establishment
algorithm is used plus source authentication information is also encrypted with the
target's public key.

3.4.1.5 DES_CBC_SOURCE

Specifies use of SPKM mechanism to provide data confidentiality by usingDES in
CBC mode. The default key establishment algorithm is used plus source authentica
information is also encrypted with the target's public key.

Values for these cryptographic profiles are assigned in Appendix B, Section B.2,
“General Security Data Module,” on page B-1.

3.4.2 IOR Encoding

The security tags in theIOR are encoded. The component data member associated w
the SPKM_1 andSPKM_2 mechanism tags is astruct , defined as follows:

struct <mechanism_name> {
AssociationOptions target_supports;
AssociationOptions target_requires;
sequence <CryptographicProfile> crypto_profiles;
sequence<octet> security_name;

};
3-62 Security Service V1.5 May 2000



3

.

ect,
l is

-58.

of

ence
mechanism_name can be eitherSPKM_1 or SPKM_2 andsecurity_name must
contain a validX.500 distinguished name represented as a string conforming to [4]
For example, it could be“cn=Andrew Rust, ou=Home Office, o=Acme Widgets Inc.,
c=CA" .

All tag components must be encapsulated using CDR encoding.

3.4.3 Using SPKM for SECIOP

When the SPKM protocol is chosen as the security mechanism for invoking an obj
the SECIOP protocol carries the information described in this section. This protoco
a profile of the SPKM GSS-API mechanism as defined in [20].

All SPKM tokens are encoded according to the general format described in
Section 3.3.7, “Mapping of Common Elements to the SECIOP Protocol,” on page 3

The innerContextTokens are described in the following sections. All
innerContextTokens are encoded using ASN.1 BER (constrained, in the interests
parsing simplicity, to the DER subset defined in [22]).

The SPKM GSS-API mechanism is identified by an OBJECT IDENTIFIER
representing "SPKM_1" or “SPKM_2”. SPKM_1 uses random numbers for replay
detection during context establishment andSPKM_2 uses timestamps (note that for
both mechanisms, sequence numbers are used to provide replay and out-of-sequ
detection during the context, if this has been requested by the application).SPKM_1
OBJECT IDENTIFIER is1.3.6.1.5.5.1.1andSPKM_2 OBJECT IDENTIFIER is
1.3.6.1.5.5.1.2.

3.4.3.1 The Initial Context Token

The initial_context_token carried within anEstablishContext SECIOP message is
encoded according to the general framework and confirms to theSPKM-REQ token as
described in [20] Section 3.1.1.

In the initial_context_token , channel bindings are required to be ZERO
(GSS_C_NO_BINDINGS).

The GSS_C_DELEG_FLAG is required to be FALSE (no delegation is supported).

The GSS_C_MUTUAL_FLAG is TRUE if it requires both parties to authenticate
itself andFALSE (the default) if only one party is required to authenticate itself.

3.4.3.2 The Final Context Token

The final_context_token carried within aCompleteEstablishContext SECIOP
message is encoded according to theSPKM-REP-TI token as defined in [20] Section
3.1.2 or theSPKM-ERROR token as defined in [20] Section 3.1.4.
Security Service V1.5 SPKM Protocol May 2000 3-63



3

s

3.4.3.3 The Continuation Context Token

The continuation_context_token carried within aContinueEstablishContext
SECIOP message is encoded according to theSPKM-REP-TI token or theSPKM-
REP-IT token as defined in [20] Section 3.1.3 or theSPKM-ERROR token.

3.4.3.4 The Message Protection Token

The message_protection_token carried within a SECIOPMessageInContext
message is encoded according to theSPKM-MIC token (for integrity) orSPKM-
WRAP token (for confidentiality) as defined in [20] Section 3.2.

3.4.3.5 The Context Delete Token

The context_delete_token carried within a SECIOPDiscardContext message is
encoded according to theSPKM-DEL token as defined in [20] Section 3.2.3.

3.5 GSS Kerberos Protocol

This section specifies the GSS Kerberos protocol. It is based on the GSS Kerbero
specification [12] which itself is based on Kerberos V5 as defined in [13]. This
specification refers to, rather than repeats, information in [12] and [13].

This section defines the required information for encoding the mechanism specific
information in the IOR and the token formats used by the SECIOP protocol.

3.5.1 Cryptographic Profiles

The following cryptographic profiles are supported with this mechanism:

3.5.1.1 DES_CBC_DES_MAC

Specifies use of the Kerberos V5 mechanism withDES MAC message digest for
integrity andDES in CBC mode for confidentiality.

3.5.1.2 DES_CBC_MD5

Specifies use of the Kerberos V5 mechanism withMD5 message digest for integrity
andDES in CBC mode for confidentiality.

3.5.1.3 DES_MAC

Specifies use of the Kerberos V5 mechanism withDES MAC message digest for
integrity.
3-64 Security Service V1.5 May 2000



3

ns

g an
3.5.1.4 MD5

Specifies use of the Kerberos V5 mechanism with aDES encryptedMD5 message
digest for integrity.

Values for these cryptographic profiles are assigned in Appendix B, Section B.2,
“General Security Data Module,” on page B-1.

3.5.2 Mandatory and Optional Cryptographic Profiles

ORB implementations claiming conformance to the GSS Kerberos protocol must
implement at least theMD5 profile. Conformant ORBs may, but are not required to,
implement the remaining cryptographic profiles defined in this specification.

3.5.3 IOR Encoding

The security tags in theIOR are encoded. Both security name and association optio
tags may appear in theIOR and be shared between mechanisms.

The component data member associated with theKerberosV5 mechanism tag is a
struct defined as follows:

struct KerberosV5 {
AssociationOptions target_supports;
AssociationOptions target_requires;
sequence<CryptographicProfile> crypto_profiles;
sequence<octet> security_name;

};

security_name shall contain a valid Kerberos Principal Name of type
GSS_KRBV5_NT_PRINCIPAL_NAME , which is defined in [12].

All tag components must be encapsulated using CDR encoding.

3.5.4 SECIOP Tokens

When the GSS-Kerberos protocol is chosen as the security mechanism for invokin
object, the SECIOP protocol carries the information described in this section. All
Kerberos tokens are encoded according to the general format.

The OBJECT IDENTIFIER for Kerberos V5 is1.3.5.1.2until [12] is advanced to a
Proposed Standard RFC when it will be changed to1.2.840.113554.1.2.2.

Each individual token is distinguished by the data carried in the ANY field of this
general framework.
Security Service V1.5 GSS Kerberos Protocol May 2000 3-65



3

e
)

f the
e

3.5.4.1 The Initial Context Token

The initial_context_token carried within anEstablishContext SECIOP message is
encoded according to the general framework and conforms to the unencrypted
authenticator message as described in [12] Section 1.1.1.

Note that channel bindings are required to be ZERO (GSS_C_NO_BINDINGS) in
this specification (see Section 3.3.8, “CSI Protocols,” on page 3-60).

The GSS_C_DELEG_FLAG is set when either the client has called
set_security_features specifyingSecDelModeSimpleDelegation or when an
administrator has calledset_delegation_mode with a value of
SecDelModeSimpleDelegation on a domain to which the target object belongs. Th
optional “Deleg” field, if present, includes a forwardable Ticket Granting Ticket (TGT
representing the delegated credentials of the client sending theEstablishContext
message.

The GSS_C_MUTUAL_FLAG is set when either the client has called
set_association_options specifying a value ofEstablishTrustInTarget or an
administrator has calledset_association_options with a value of
EstablishTrustInTarget on the domain to which the target belongs.

TheGSS_C_REPLAY_FLAG andGSS_C_SEQUENCE_FLAG are generally clear
as they can cause incorrect replay and misordering detection in a multi-threaded
environment (see Section 3.3.3, “Association Options,” on page 3-55).

Note – The current GSS Kerberos implementation available without cost from MIT
does not support replay detection.

3.5.4.2 The Final Context Token

The final_context_token carried within aCompleteEstablishContext SECIOP
message is encoded according to the formats defined in [12] Section 1.1.2.

3.5.4.3 The Continuation Context Token

Kerberos V5 does not use theContinueEstablishContext message and therefore
does not define thecontinuation_context_token format. If the Kerberos V5
mechanism is amended in the future to support mechanism negotiation, support o
ContinueEstablishContext message would be necessary and thus definition of th
continuation_context_token would be required.

3.5.4.4 The Message Protection Token

The message_protection_token carried within a SECIOPMessageInContext
message is encoded according to the formats defined in [12] section 1.2.
3-66 Security Service V1.5 May 2000



3

orts

t

A

re
d to

he

n.

een
The

s

ned
key
to
e

3.6 CSI-ECMA Protocol

This section defines the CSI-ECMA protocol. It is based on the ECMA GSS-API
mechanism as defined in ECMA-235, though is a significant subset of that. It supp
all CSI levels (0, 1, and 2). It provides three options for key distribution:

1. A secret key option using Kerberos data structures.

2. A hybrid option where secret keys are used within an administrative domain, bu
public keys are used between domains.

3. A public key option which uses public key technology for key distribution both
within and between domains.

This section includes the full definition of the CSI-ECMA protocol so that it can be
read without reference to ECMA 235. The CSI-ECMA protocol is a subset of ECM
235. It is very similar to the SESAME profile as described in [16].

The CSI-ECMA protocol supports the CORBA Security Level 2 facilities. It is
designed to be extensible as new facilities (for example, new delegation options) a
agreed in future, and further key distribution options. It is also designed to respon
the requirements of international deployment such as minimal confidentiality (only
keying information needs to be encrypted), use of anonymous audit (a separate
audit_id can be transmitted), and choice of cryptography for message protection
(including strong integrity, weak confidentiality).

The structure of the initial context token is key to providing this flexibility. It is
separated into three parts:

1. Authorization information.

2. Information concerned with establishing the security association using one of t
supported key distribution options.

3. Information concerned with generating the dialogue keys for message protectio

3.6.1 Concepts

3.6.1.1 Separation of Concerns

The initial context token transmitted in the SECIOP EstablishContext message on
setting up a security association contains a number of parts with limited links betw
them. This is so that the different parts can be varied independently of each other.
three main parts are:

1. Authorization information - the Privilege Attribute Certificate (PAC) which contain
the privileges used for access control and other attributes such as the audit id.
Associated with this are delegation and other controls. Therefore, this is concer
with the access control and delegation policies, but is mainly independent of the
establishment and message protection mechanisms. The PAC can be updated
affect these policies independently of mechanisms. (The size of the PAC may b
Security Service V1.5 CSI-ECMA Protocol May 2000 3-67



3

ory
,

rity
ome

s
can
n

re

eys

te
s

dix
the

g
e
he
e.

es
AC

of
significant; therefore, it is not confidentiality protected, as this may cause regulat
problems.) Privilege and other attributes in PACs are described in Section 3.6.2
“Security Attributes,” on page 3-68.

2. Target key block - used to provide the information needed to establish the secu
association between client and target. Secret key or public key technology (or s
hybrid of these) may be used. The result is always a “basic” key from which
dialogue keys to protect application messages can be derived. Therefore, this i
concerned with the mechanism for establishing trust and distributing keys. This
be varied independently of the authorization policies and the message protectio
methods. Key establishment methods are described in Section 3.6.5, “Key
Distribution Schemes,” on page 3-69.

3. Dialogue key packages which control how dialogue keys to protect messages a
derived from the basic key. Note that this is largely independent of the key
distribution method (i.e., public key technology may be used to establish secret k
for dialogue protection).

3.6.2 Security Attributes

3.6.2.1 Privilege Attributes

The CSI-ECMA protocol allows a range of privilege attributes in a Privilege Attribu
Certificate (PAC) transmitted between the client and target object. These privilege
then can be used for access control.

Privilege attributes which can be carried in the PAC at level 2 are defined in Appen
B, Section B.11.1, “Attribute Types,” on page B-27 and include all those defined in
CORBA Security specification.

A vendor or user enterprise may also define its own privilege attributes (if the
particular implementation allows this) and use them for access control.

In line with the CORBA Security specification, each privilege attribute has a definin
authority which identifies the authority responsible for defining the semantics of th
value of the security attribute. This can be included for each privilege attribute in t
PAC and in this case, there could be a different defining authority for each privileg

It is often the case that most attributes in the PAC come under the same defining
authority which is the authority that issued the PAC. If the PAC, as transmitted, do
not have defining authorities for some attributes, then the issuing authority of the P
is considered to be the defining authority.

3.6.2.2 Miscellaneous Attributes

This specification allows other types of security attributes to be carried in the PAC
under the general heading of miscellaneous attributes. In CSI-ECMA, the only type
miscellaneous attribute supported is the audit identity.
3-68 Security Service V1.5 May 2000



3

tion

hen

e in

, the
ed

used
d for
o
in
key

g

eys.
en

and

lt of
3.6.3 Target Access Enforcement Function

The security processing functionality at the target is split between the target
application and the target access enforcement function (targetAEF ). ISO (ISO/IEC
10181-3) defines an access enforcement function collocated with the target applica
which controls access to a target application. This has a number of advantages
including:

• The security critical code is isolated which makes security evaluation simpler.

• Long term keys can be shared between applications/objects. This can simplify
administration (as there are less keys) and allow re-use of keying information w
accessing another application/object sharing thistargetAEF .

The targetAEF is responsible for setting up the security association, including
validating the PAC and releasing the keys for message protection.

3.6.4 Basic and Dialogue Keys

The exchanges between client and target are secured using a two level key schem
which a distinction is made between basic and dialogue keys.

A basic key is a temporary key established between a client and the target (actually
targetAEF ). The basic key is used for integrity protection of the PAC and associat
information, its own key establishment information, and the information used to
establish the dialogue keys. The basic key is established by the client sending
information to the target in thetargetKeyBlock . This can take different forms,
depending on the key distribution method used.

A dialogue key is a temporary key established between the client and target and is
to protect the requests and responses. Separate dialogue keys can be establishe
integrity and confidentiality protection, enabling different strengths of mechanism t
be configured. The information required to derive the dialogue keys is transmitted
the Dialogue key package. Typically, dialogue keys are constructed from the basic
using a one way algorithm.

3.6.5 Key Distribution Schemes

The CSI-ECMA protocol allows a choice of key distribution methods for establishin
a client-target security association including the basic key. The content of the
targetKeyBlock depends on the scheme used.

The key distribution schemes depend on the existence of long term cryptographic k
Both secret (symmetric) and public (asymmetric) key technology can be used. Wh
secret keys are used, a key is shared between the target and its Key Distribution
Service (KDS). When public keys are used, the private key is kept by the principal
the public key held in a certificate, in a directory or elsewhere.

Initiators may also possess symmetric or asymmetric keys established as the resu
an earlier authentication.
Security Service V1.5 CSI-ECMA Protocol May 2000 3-69



3

Key
ural

ey

s a

key

e

DS.

k is

mine
.
ted
This CSI-ECMA specification defines three key distribution schemes. These are
described below and are identified by a name and an architectural option number.
Other schemes are possible as extensions to this as described in ECMA-235.

3.6.5.1 Basic Symmetric Key Distribution Scheme

In this scheme, the client and target each share different secret keys with the same
Distribution Server. The scheme name for this is: symmIntradomain. The architect
option number is2.

To establish the association between the client and target, the client obtains a
targetKeyBlock from its KDS containing a basic key encrypted under the target’s
long term key. On receipt of the targetKeyBlock, the target can extract the basic k
from it.

In this case, the targetKeyBlock is a Kerberos ticket.

3.6.5.2 Symmetric Key Distribution with Asymmetric KDS

In this scheme, the initiator shares a secret key with its KDS and the target share
secret key with its KDS (which is different). In addition, each KDS possesses a
private/public key pair. The scheme name for this is:hybridInterdomain . The
architectural option number is3.

To establish the client-target association, the client gets atargetKeyBlock from its
KDS containing the basic key encrypted under a temporary key and the temporary
encrypted under the target’s KDS public key. ThetargetKeyBlock is also signed
using the initiator’s KDS private key.

On receipt of thetargetKeyBlock , the target transmits it to its KDS and gets back th
basic key encrypted under the long term secret key it shares with its KDS.

3.6.5.3 Full Public Key Scheme

In this scheme, both client and target possess private/public keys. Neither use a K
The scheme name for this is:asymmetric. The architectural option number is6.

To establish the client-target association, the client constructs atargetKeyBlock
containing a basic key encrypted under the target’s public key. The target key bloc
signed with the client’s private key. On receipt of thetargetKeyBlock , the target
directly establishes a basic key from it.

3.6.6 Cryptographic Algorithms and Profiles

Cryptographic and hashing algorithms are used for various purposes. This section
categorizes the algorithms according to usage so that client and targets can deter
more easily if they have the cryptographic support required to allow interoperation
The categorization then is refined into cryptographic profiles that can be incorpora
3-70 Security Service V1.5 May 2000



3

the
into specific mechanism identifiers. The mechanism identifiers with cryptographic
profiles then can be carried in theIOR. Table 3-6 summarizes the different uses to
which algorithms are put.

The algorithms can now be further categorized into broader classes, as shown in
following table.

Use 10 is a fixed value and does not contribute to mechanism use options.

Table 3-6 Summary of Algorithm Usage

Use
Reference Description of Use Type of Algorithm

2 PAC protection using signature OWF + asymmetric
signature

3 basic key usage confidentiality and
integrity

4 integrity dialogue key derivation OWF

5 integrity dialogue key usage symmetric integrity

6 CA public keys OWF + asymmetric
signature

7 encryption using shared long term
symmetric key

symmetric confidentiality

8 name hash to prevent ciphertext
stealing

OWF

9 asymmetric basic key distribution asymmetric encryption

10 key establishment within
SPKM_REQ

(fixed value)

11 confidentiality dialogue key
derivation

OWF

12 confidentiality dialogue key use symmetric confidentiality

Table 3-7 Summary of Algorithm Classes

Class 1: symmetric for security of mechanism: uses 3, 5, 7

Class 2: all OWFs: uses 2, 4, 6, 8, 11

Class 3: internal mechanism asymmetric, encrypting: use 9

Class 4: internal mechanism asymmetric, non encrypting: use 2

Class 5: CA’s asymmetric non-encrypting: use 6

Class 6: data confidentiality, symmetric: use 12
Security Service V1.5 CSI-ECMA Protocol May 2000 3-71



3

is

ed

as
tem
on
d

er it
es
Based on these classes, the following cryptographic algorithm usage profiles are
defined. Other profiles are possible and can be defined as required. Note that
symmetric algorithm key sizes are included in this profiling, thus DES/64 indicates
DES with a 64 bit key.

Table key:

• Profile 1 provides full security, using standard cryptographic algorithms with
common accepted key sizes.

• Profile 2 is the same, but without supporting any confidentiality of user data.

• Profile 3 provides low grade confidentiality. In some countries, products using th
are exportable without restriction; in others, they are more easily
exportable/importable.

• Profile 5 uses algorithms identified by a separately specified default. It is intend
for use by organizations who wish to use their own proprietary or government
algorithms by separate agreement or negotiation.

3.6.7 PAC Protection and Delegation - Outline

The ECMA protocol provides a number of ways to protect a principal’s credentials,
held in a PAC. In CSI-ECMA, a digital signature is used, as this allows a target sys
to check what Security Authority authorized use of these privileges, without relying
the transitive trust needed for sealed PACs crossing domain boundaries. Encrypte
PACs are not included in this profile.

There may also be controls on where the PAC may be delegated and used.

Protection method fields in the PAC specify where this PAC can be used and wheth
can be used by the specified targets only (for example, allowing use of the privileg
for access control) or whether that target can also delegate it.

Table 3-8 Cryptographic Algorithm Usage Profiles

Profile 1
Full

Profile 2
no data
confidentiality

Profile 3
low grade
confidentiality

Profile 5
defaulted

Class 1 DES/64 DES/64 RC4/128 separately
agreed default

Class 2 MD5 MD5 MD5 separately
agreed default

Class 3 RSA RSA RSA separately
agreed default

Classes 4
and 5

RSA RSA RSA separately
agreed default

Class 6 DES/64 None RC4/40 separately
agreed default
3-72 Security Service V1.5 May 2000



3

s

an

, a
.

se

ne

o
the

CA

ther
n

the

egate

get
by
Protection method fields are grouped together into method groups. The protection
method check is passed if all the method fields in any one of the method groups i
passed.

3.6.8 PPID Method

This method protects the PAC from being stolen, by restricting the initiators who c
use the PAC.

When no other method group is present, it permits the PAC to be used only by the
client entity to which it was originally issued (i.e., it prevents delegation). However
PAC with a PPID will be delegatable if delegation is permitted by a PV/CV method

A PPID identifying the initiating principal is put in the PAC by the Privilege Attribute
(or other security) Service, according to policy or client request. The same/related
information is also supplied as part of thetargetKeyBlock so that the target can
check that the entity which sent this token is the same entity which is entitled to u
the PAC.

The PPID is a security attribute whose value in the CSI-ECMA protocol can take o
of two forms, depending on the key distribution scheme used by the initiator.

• When the initiator has a secret key, the PPID is a random bit string which is als
sent in the authorization field of the Kerberos ticket. This ticket is sent as part of
targetKeyBlock and can be checked to come from this client.

• For the public key scheme, the PPID contains the certificate serial number and
name for the initiator’sX.509 public key certificate. ThetargetKeyBlock sent to
the target is signed using this initiator’s private key.

3.6.9 PV/CV Delegation Method

This method prevents the PAC from being stolen and at the same time controls whe
(and where) it can be delegated. The method field in the PAC contains a protectio
value (PV) which is a one way function of a Control Value (CV).

A PAC will be accepted by the target (subject to other controls in the PV’s method
group) if the client proves knowledge of the CV by passing it (encrypted) as part of
initial context token. A method group contains at most one PV value.

In the simplest case, the method group contains just the PV and the target can del
the PAC if it receives the CV.

The PV/CV method can be used for more selective targeting of the PAC also. A
method group can include qualifier attributes which specify where the PAC can be
used.Qualifier attributes can specify which principals can receive the PAC as a tar
and which can act as both delegate and target. These principals can be specified
their identities (though the protocol is extensible for other options such as a
group/domain to which they belong).
Security Service V1.5 CSI-ECMA Protocol May 2000 3-73



3

to

wn
rict
tion

s:

e

e,

heme

the
For the simpler case, delegation can be prevented by setting the delegation mode
Security::SecDelModeNoDelegation . This will cause the client to send the PAC
without the CV.

Note –The protocol allows more than one method group in the PAC, each with its o
PV/CV. This can be used by a client or intermediate object in a chain to further rest
who can use the PAC, by failing to send some of the CVs. However, this specifica
does not include any operations for restricting delegation in this way, so it is not
possible to exploit this capability.

3.6.9.1 Restrictions

Other restrictions may be included in the PAC. An ORB conforming to this
specification does not have to generate these restrictions, but will reject PACs with
mandatory restrictions which it does not understand or cannot process.

3.6.10 Mechanism Identifiers and IOR Encoding

All tag component data in the IOR must be encapsulated using CDR encoding.

Mechanism identifiers for the CSI-ECMA protocol have up to three parts, as follow

1. Theprotocol identifier. This is CSI-ECMA.

2. Thearchitectural option . This identifies the architectural option (i.e., the key
distribution method used when establishing security associations). If absent, th
default option is used.

3. Thecryptographic profile . This identifies the cryptographic profile as defined
above. If absent, a default is used.

In the IOR, the mechanism name in the struct of theTAG_x_SEC_MECH is:

CSI-ECMA_<architectural option>

where the architectural options supported are Secret, Hybrid, and Public; therefor
mechanism names areCSI_ECMA_Secret , CSI_ECMA_Hybrid , and
CSI_ECMA_Public .

These values could also be negotiated using a generic mechanism negotiation sc
such as that in [19] in future, but are in the IOR for the current CSI specification.

3.6.11 Security Names

This protocol uses two forms of security names:

1. Directory names (DNs) are used where public key technology is used, as this is
form of name used in X509 certificates.
3-74 Security Service V1.5 May 2000



3

rm of

the
no

cter

re
s,
d

ros
e
to

sm.

en
2. Kerberos names are used where secret key technology is used, as this is the fo
name used by Kerberos.

3.6.11.1 Kerberos Naming

An entity that uses the normal Kerberos V5 authentication is given a printable
Kerberos principal name of the form:

<principal_name>@realm_name>

Note – Components of a name can be separated by “/”.

The separator @ signifies that the remainder of the string following the @ is to be
interpreted as a realm identifier. If no @ is encountered, the name is interpreted in
context of the local realm. Once an @ is encountered, a non-null realm name, with
embedded “/” separators must follow. The “/” character is used to quote the chara
that follows immediately.

3.6.11.2 Directory Naming

Where public key technology supported by Directory Certificates is used, entities a
given DNs. Such names are normally transmitted as directoryNames. At interface
they are strings built from components separated by a semicolon. The standardize
keywords supported are:

CN (common-name)
S (surname)
OU (organization unit)
O (organization)
C (country)

An example of a supported DN is:

CN=Martin;OU=Sesame;O=Bull;C=fr

There is no general rule for mapping the Directory name of an entity onto its Kerbe
principal name. An explicit mapping is provided in a principal’s Directory Certificat
using the extensions field of the extended Directory Certificate syntax (version 3)
carry the principal’s Kerberos name.

The syntax of the login name is imported from the Kerberos V5 GSS-API mechani
The form of name is referred to using the symbolic name:
GSS_KRB5_NT_PRINCIPAL. Syntax details are given in [12].

3.6.12 SECIOP Tokens When Using CSI-ECMA

All SECIOP security tokens conform to the basic token format defined in “Basic Tok
Format” on page 3-58. The object identifier for theMechType is of the form:
Security Service V1.5 CSI-ECMA Protocol May 2000 3-75



3

file

in

age.
{generic_CSI_ECMA_mech (y) (z)}

where the value forgeneric_CSI_ECMA_mechis 1.3.12.0.235.4and the values of y
and z, if present, represent the architectural option number and cryptographic pro
numbers. Bothy andz can be defaulted.

The innerContextToken of the SECIOP message may be any of the tokens defined
Section 3.3.7.2, “Inner Context Tokens,” on page 3-59. For context establishment,
tokens are:

The per-message tokens are:

A ContextDeleteToken may also be used either by the initiator or the target to
release a Security Association.

This definition uses ASN.1 types from other standards (e.g., the ISO definition of a
Certificate). These types are detailed in Annex E of ECMA-235.

3.6.13 Initial Context Token

The initial context token contains:

• General information such as the token id,contextFlags(delegation, replay-detect
etc.),utcTime, seq-number, etc.

• A targetAEF part to be passed to the target access enforcement function. This
includes the PAC and associated CVs, target key block, and dialogue key pack

• A seal.

InitialContextToken Sent by the initiator to a target, to start the process of
establishing a Security Association.

TargetResultToken Sent to the initiator by the target, if needed, following
receipt of an Initial Context Token.

ErrorToken Sent by the target on detection of an error during
Security Association establishment.

MICToken Sent either by the initiator or the target to verify the
integrity of the user data sent separately.

WrapToken Sent either by the initiator or the target. Encapsulates the
input user data (optionally encrypted) along with
integrity check values.
3-76 Security Service V1.5 May 2000



3

Figure 3-6 Initial Context Token

InitialContextToken ::=  SEQUENCE{
ictContents [0]   ICTContents,
ictSeal [1]   Seal

}

ictContents
Body of the initial context token

ictSeal
Seal ofictContents computed with the integrity dialogue key. Only thesealValuefield
of the Sealdata structure is present. The cryptographic algorithms that apply are
specified byintegDKUseInfo in the dialogueKeyBlock field of the initial context
token.

ICTContents ::= SEQUENCE {
tokenId [0]   INTEGER, -- shall contain X'0100'
SAId [1]   OCTET STRING,
targetAEFPart [2]   TargetAEFPart,
targetAEFPartSeal [3]   Seal,
contextFlags [4]   BIT STRING {

delegation (0),
mutual-auth (1),
replay-detect (2),
sequence (3),
conf-avail (4),
integ-avail (5)

}
utcTime [5] UTCTime OPTIONAL,
usec [6] INTEGER OPTIONAL,
seq-number [7] INTEGER OPTIONAL,
initiatorAddress [8] HostAddress OPTIONAL,
targetAddress [9] HostAddress OPTIONAL

}

tokenId
Identifies the initial-context token. Its value is01 00 (hex)

target AEF part

token id. pac & CVs target Key Block dialogue Key Block seal

(used by target to enforce policy)

etc. (initiating and/or
delegate principal’s

authorization
and delegation
information)

(information
needed to

establish the
association)

(information used
to establish

message protection
key - integrity and

confidentiality)
Security Service V1.5 CSI-ECMA Protocol May 2000 3-77



3

r
et,

d
alue

tion.

ified

r.

ed
SAId
A random number for identifying the Security Association being formed; it is one
which (with high probability) has not been used previously. This random number is
generated by the initiator and processed by the target as follows:

• If no targetResultToken is expected, the SAId value is taken to be the identifie
of the Security Association being established (if this is unacceptable to the targ
then an error token with etContents value of
gss_ses_s_sg_sa_already_established must be generated).

• If a targetResultToken is expected, the target generates its random number an
concatenates it to the end on the initiator's random number. The concatenated v
is then taken to be the identifier of the Security Association being established.

targetAEFPart
Part of the initial-context token to be passed to the target access enforcement func
This is defined below and includes PAC, basic, and dialogue key packages.

targetAEFPartSeal
Seal of thetargetAEFPart computed with the basic key. Only thesealValuefield of
theSealdata structure is present. The cryptographic algorithms that apply are spec
by algorithm profile in the mechanism option.

contextFlags
Combination of flags that indicates context-level functions requested by the initiato

utcTime
The initiator's UTC time.

usec
Micro second part of the initiator's time stamp. This field along with utcTime are us
together to specify a reasonably accurate time stamp.

Flag Indicates that ...

delegation when set to0, the initiator explicitly forbids delegation of the PAC
in the targetAEFPart .

mutual-auth mutual authentication is requested.

replay-detect replay detection features are requested to be applied to messages
transferred on the established Security Association.

sequence sequencing features are requested to be enforced to messages
transferred on the established Security Association.

conf-avail a confidentiality service is available on the initiator side for the
established Security Association.

integ-avail an integrity service is available on the initiator side for the
established Security Association.
3-78 Security Service V1.5 May 2000



3

ult

hen

hen

er

n

seq-number
When present, specifies the initiator's initial sequence number; otherwise, the defa
value of0 is to be used as an initial sequence number.

initiatorAddress
Initiator's network address part of the channel bindings. This field is present only w
channel bindings are transmitted by the caller to the mechanism implementation.
Conformant ORBs do not need to generate this field.

targetAddress
Target's network address part of the channel bindings. This field is present only w
channel bindings are transmitted by the caller to the implementation.

3.6.13.1 TargetAEF Part

TargetAEFPart ::= SEQUENCE {
pacAndCVs [0]   SEQUENCE OF CertandECV OPTIONAL,
targetKeyBlock [1]   TargetKeyBlock,
dialogueKeyBlock [2]   DialogueKeyBlock,
targetIdentity [3]   Identifier,
flags [4]   BIT STRING {

delegation         (0)
}

}

pacAndCVs
The initiator ACI to be used for this Security Association. This field is not present
when the association does not require any ACI. This field contains the PAC togeth
with associated PAC protection information. When only simple delegation is
supported, exactly one of these should be present.

If composite delegation options are supported, this field will contain more than one
PAC. For example, for the initiator plus immediate invoker case, the initiator’s PAC
would be present (with CVs) and the immediate invoker’s (with a PPID).

targetKeyBlock
The targetKeyBlock carrying the basic key to be used for the Security Association
being established.

dialogueKeyBlock
A dialogue key block used by thetargetAEF along with the basic key to establish an
integrity dialogue key and a confidentiality dialogue key for per-message protectio
over the Security Association being established.

targetIdentity
The identity of the intended target of the Security Association. Used by thetargetAEF
to validate the PAC. Can also be used by thetargetAEF to help protect the delivery of
dialogue keys.
Security Service V1.5 CSI-ECMA Protocol May 2000 3-79



3

n

xt
rget

ch
ism

lt
flags
Flags required by thetargetAEF for its validation process. Contains only a delegatio
flag, the value of which is the same as the value of delegation flag incontextFlag field
of ictContents. When the flag is set, all ECVs sent inpacAndCVs are made available
to the target. Other bits are reserved for future use.

3.6.14 TargetResultToken

This token is returned by the target if the mutual-req flag is set in the Initial Conte
Token. It serves to authenticate the target to the initiator since only the genuine ta
could derive the integrity dialogue key needed to seal theTargetResultToken.

TargetResultToken ::=  SEQUENCE{
trtContents [0] TRTContents,
trtSeal [1] Seal

}

TRTContents ::= SEQUENCE {
tokenId [0] INTEGER,    -- shall contain X'0200'
SAId [1] OCTET STRING,
utcTime [5] UTCTime OPTIONAL,
usec [6] INTEGER OPTIONAL,
seq-number [7] INTEGER OPTIONAL,

}

Note – There is no field for returning certification data here. This is because any su
data that may be required is assumed to be returned at the conclusion of mechan
negotiation.

trtContents
This contains only administrative fields, identifying the token type, the context, and
providing exchange integrity.

seq-number
When present, specifies the target's initial sequence number; otherwise, the defau
value of0 is to be used as an initial sequence number.

The other administrative fields are as described previously.

trtSeal
Seal oftrtContents computed with the integrity dialogue key. Only thesealValuefield
of the Sealdata structure is present. The cryptographic algorithms that apply are
specified byintegDKUseInfo in the dialogueKeyBlock field of the initial context
token.

3.6.15 ErrorToken

An error token may be returned, as follows:

ErrorToken ::=   {
3-80 Security Service V1.5 May 2000



3

iven
tokenType [0] OCTET STRING VALUE X'0400',
etContents [1] ErrorArgument,

}

etContents
Contains the reason for the creation of the error token. The different reasons are g
as minor status return values.

ErrorArgument ::= ENUMERATED {
gss_ses_s_sg_server_sec_assoc_open (1),
gss_ses_s_sg_incomp_cert_syntax (2),
gss_ses_s_sg_bad_cert_attributes (3),
gss_ses_s_sg_inval_time_for_attrib (4),
gss_ses_s_sg_pac_restrictions_prob (5),
gss_ses_s_sg_issuer_problem (6),
gss_ses_s_sg_cert_time_too_early (7),
gss_ses_s_sg_cert_time_expired (8),
gss_ses_s_sg_invalid_cert_prot (9),
gss_ses_s_sg_revoked_cer (10),
gss_ses_s_sg_key_constr_not_supp (11),
gss_ses_s_sg_init_kd_server_ unknown (12).
gss_ses_s_sg_init_unknown (13),
gss_ses_s_sg_alg_problem_in_dialogue_key_block (14),
gss_ses_s_sg_no_basic_key_for_dialogue_key_block (15),
gss_ses_s_sg_key_distrib_prob (16),
gss_ses_s_sg_invalid_user_cert_in_key_block (17),
gss_ses_s_sg_unspecified (18),
gss_ses_s_g_unavail_qop (19),
gss_ses_s_sg_invalid_token_format (20)

}

3.6.16 Per Message Tokens

The syntax of themessage_protection_tokenin SECIOP messages has the same
general structure for both MIC and Wrap tokens:

PMToken ::=  SEQUENCE{
pmtContents [0] PMTContents,
pmtSeal [1] Seal

-- seal over the pmtContents being protected
}

PMTContents ::= SEQUENCE {
tokenId [0] INTEGER, -- shall contain X'0101'
SAId [1] OCTET STRING,
seq-number [2] INTEGER  OPTIONAL
userData [3] CHOICE {

plaintext BIT STRING,
ciphertext OCTET STRING  OPTIONAL

}
directionIndicator [4] BOOLEAN OPTIONAL

}

pmtContents
Security Service V1.5 CSI-ECMA Protocol May 2000 3-81



3

then

alue

s a
e in a

r

with
the

er is

,
sed
s

tokenId
SAId
A random number for identifying the Security Association being formed; it is one
which (with high probability) has not been used previously. This random number is
generated by the initiator and processed by the target as follows:

• If no targetResultToken is expected, theSAId value is taken to be the identifier of
the Security Association being established (if this is unacceptable to the target,
an error token withetContentsvalue ofgss_ses_s_sg_sa_already_establishedmust
be generated).

• If a targetResultToken is expected, the target generates its random number and
concatenates it to the end on the initiator's random number. The concatenated v
is then taken to be the identifier of the Security Association being established.

seq-number
This field must be present if replay detection or message sequencing have been
specified as being required at Security Association initiation time. The field contain
message sequence number whose value is incremented by one for each messag
given direction, as specified bydirectionIndicator . The first message sent by the
initiator following the InitialContextToken shall have the message sequence numbe
specified in that token, or if this is missing, the value0. The first message returned by
the target shall have the message sequence number specified in theTargetReplyToken
if present, or failing this, the value0.

The receiver of the token will verify the sequence number field by comparing the
sequence number with the expected sequence number and the direction indicator
the expected direction indicator. If the sequence number in the token is higher than
expected number, then the expected sequence number is adjusted and
GSS_S_GAP_TOKENis returned. If the token sequence number is lower than the
expected number, then the expected sequence number is not adjusted and
GSS_S_DUPLICATE_TOKEN or GSS_S_OLD_TOKEN is returned, whichever is
appropriate. If the direction indicator is wrong, then the expected sequence numb
not adjusted andGSS_S_UNSEQ_TOKENis returned.

userData
See specific token type narratives below.

directionIndicator
FALSE indicates that the sender is the context initiator,TRUE that the sender is the
target.

pmtSeal
See specific token type narratives below.

3.6.16.1 MICToken

A MICToken is a per-message token, separate from the user data being protected
which can be used to verify the integrity of that data as received. The token is pas
in themessage_protection_tokenin SECIOP messages, and the protected data follow
as a GIOP message or message fragment. The syntax of the token is:
3-82 Security Service V1.5 May 2000



3

ody
:

ed
r is
MICToken  ::=   PMToken

The overall structure and field contents of the token are described above. Fields
specific to theMICToken are:

userData
Not present forMICTokens.

pmtSeal
TheChecksumis calculated over theDER encoding of thepmtContents field with the
user data temporarily placed in theuserData field. TheuserData field is not
transmitted.

3.6.16.2 WrapToken

A WrapToken encapsulates the input user data (optionally encrypted) along with
associated integrity check values. It consists of an integrity header followed by a b
portion that contains either the plaintext or encrypted data. The syntax of the token is

WrapToken  ::=   PMToken

The overall structure and field contents of the token are described above. Fields
specific to theWrapToken are:

userData
Present either in plain text form or encrypted. If the data is encrypted, it is perform
using the Confidentiality Dialogue Key, and as in [13], an 8-byte random confounde
first prepended to the data to compensate for the fact that anIV of zero is used for
encryption.

wtSeal
The Checksum is calculated over thepmtContents field, including theuserData. If
the userData field is to be encrypted, the seal value is computed prior to the
encryption.

3.6.17 ContextDeleteToken

The ContextDeleteTokenis issued by either the context initiator or the target to
indicate to the other party that the context is to be deleted.

ContextDeleteToken ::=  SEQUENCE {
cdtContents [0] CDTContents,
cdtSeal [1]  Seal

--  seal over cdtContents, encrypted under the Integrity
--  Dialogue Key. Contains only the sealValue field

}

CDTContents ::= SEQUENCE {
tokenType [0]  OCTET STRING VALUE X'0301',
SAId [1] OCTET STRING,
utcTime [2] UTCTime OPTIONAL,
usec [3] INTEGER OPTIONAL,
Security Service V1.5 CSI-ECMA Protocol May 2000 3-83



3

seq-number [4] INTEGER OPTIONAL,
}

cdtContents
This contains only administrative fields, identifying the token type, the context, and
providing exchange integrity.

seq-number
When present, this field contains a value one greater than that of theseq-numberfield
of the last token issued from this issuer. The other administrative fields are as
described above.

trtSeal
See above for a general description of the use of this construct.

3.6.18 Security Attributes

3.6.18.1 Data Structures

The security attribute is a basic construct for privilege and other attributes in PACs.

SecurityAttribute ::= SEQUENCE{
attributeType Identifier,
attributeValue SET OF SEQUENCE {

definingAuthority  [0] Identifier    OPTIONAL,
securityValue    [1] SecurityValue

}
}

Identifier ::= CHOICE{
objectId [0] OBJECT IDENTIFIER,
directoryName [1] Name,

-- imported from the Directory Standard
printableName [2] PrintableString,
octets [3] OCTET STRING,
intVal [4] INTEGER,
bits [5] BIT STRING,
pairedName [6] SEQUENCE{

printableName [0] PrintableString,
uniqueName [1] OCTET STRING

}
}

SecurityValue ::= CHOICE{
directoryName [0] Name,
printableName [1] PrintableString,
octets [2] OCTET STRING,
intVal [3] INTEGER,
bits [4] BIT STRING,
any [5] ANY -- defined by attributeType

}

3-84 Security Service V1.5 May 2000



3

ted

l in

on

ntics

rity

s for

a

t,

in

ly
Only one set member is permitted in AttributeValue. Multivalue attributes are effec
in the securityValue field, where the “SEQUENCE OF” construct can be used.
(Including “SET OF” in the syntax enables security attributes to be stored as norma
a Directory whenever the choice made within Identifier is OBJECT IDENTIFIER.)

A directory name is translated into a string format as defined in Section 3.6.11,
“Security Names,” on page 3-74. Thesequence<octet>attribute value returned at the
IDL interface is a representation of this string, not the more complex ASN.1 definiti
of this.

attributeType
Defines the type of the attribute. Attributes of the same type have the same sema
when used in Access Decision Functions, though they may have different defining
authorities.

definingAuthority
The authority responsible for the definition of the semantics of the value of the secu
attribute. This optional field of theattributeValue can be used to resolve potential
value clashes. It is defined as an Identifier which has a choice of syntax. For CSI-
ECMA, it is always adirectoryName.

securityValue
The value of the security attribute. Its syntax can be either one of the basic syntaxe
attributes or a more complex one determined by the attribute type.

3.6.18.2 Attribute Types

An attribute type in this standard is formally defined as an Identifier which provides
choice of syntax; however, all standard attribute types are defined as OBJECT
IDENTIFIERs. Three types of attributes are defined:

1. Privilege attributes (e.g.,AccessId, GroupId , Role)

2. Miscellaneous attributes, mainly theAuditId

3. Qualifier attributes used within thePV/CV delegation scheme to say where
credentials can be used/delegated.

For standard attributes, the OBJECT IDENTIFIER includes

• first, a standard part with the value1.3.12.1.46,

• then the “family” for privilege, miscellaneous, or qualifier attributes (4, 3, or 5), and

• then the value for that particular attribute type.

All standard attributes, which conformant ORBs must be able to generate/transmi
have this form.

In addition, conformant ORBs must be able to handle other attribute types defined
this chapter. They must also be able to handle attribute types with “OMG ” object
identifiers, as described in Section 3.1.13.5, “Mapping Other Attributes to External
Valid IDL Attributes,” on page 3-29. In this case, the Object Identifier is:
Security Service V1.5 CSI-ECMA Protocol May 2000 3-85



3

re

ers

tory

in

et
<iso>..<omg>.<security><family definer>.<family>.<attribute type>

where the values of the CORBA family definer, CORBA family and attribute type a
as defined in Appendix B, Section B.11.1, “Attribute Types,” on page B-27. For
standard attributes, the family definer is0 and the family is0 for privileges and1 for
miscellaneous attributes.

OMG Object Identifiers can also be used for privilege attributes defined by other
organizations, who have registered a family definer with OMG.

3.6.19 Privilege and Miscellaneous Attribute Definitions

Privilege and miscellaneous attribute types are normally identified by Object Identifi
which have a standard part, then family and attribute type parts.

The following privilege and miscellaneous attributes are defined in the CORBA
Security specification and have defined attribute types. Some of these are manda
for a CSI level 2 conformant ORB to generate (see Section 3.1.15, “Support for
CORBA Security Facilities and Extensibility,” on page 3-32). The Object Identifier
the privilege attribute set for that type is listed in the following table.

3.6.20 Qualifier Attributes

When atargetQualification or delegateTargetQualificationmethod is present in the
PAC, the syntax used for the method parameters issecurityAttribute . Object
Identifiers for qualifier attributes have the value1.3.12.1.46.5.<qualifier attribute type>.

Currently, only one form of qualifier attribute is defined, and this identifies the targ
by security name. This is usually the name of an identity domain as defined in
Section 2.1.8, “Domains,” on page 2-21, not an individual object.

Table 3-9 Privilege and Miscellaneous Attributes

Type of
Attribute

oid family
& type

Syntax Meaning

access-identity 4.2 printableString The access identity represents the principal's
identity to be used for access control purposes.

primary-group 4.3 printableString The primary group represents a unique group to
which a principal belongs. A security context
must not contain more than one primary group for
a given principal.

group 4.4 SEQUENCE OF
printableString

A group represents a characteristic common to
several principals. A PAC may contain more than
one group for this principal.

role 4.1 printableString A role attribute represents one of the principal's
organizational responsibilities.

audit_id 3.2 printableString The identity of the principal as used for auditing.
3-86 Security Service V1.5 May 2000



3

te
t.

is

a
n

lized
In future, other forms of qualifier attributes may be added. For example, the attribu
could identify an invocation delegation domain, rather than particular named targe

3.6.21 Target Names

Within a PAC protection method, a target name is indicated using the OID:

target-name-qualifier OBJECT IDENTIFIER ::= {qualifier-attribute 1 }
Its syntax in the PAC is:
TargetNameValueSyntax ::= Identifier

3.6.22 PAC Format

The PAC is in the form of a generalized certificate. A Generalized Certificate is
composed of three main structural components:

1. The “commonContents” fields collectively serve to provide generally required
management and control over the use of the PAC.

2. The “specificContents” fields are different for different types of certificate, and
contain a type identifier to indicate the type. In this specification, only one type
defined - the Privilege Attribute Certificate (PAC).

3. The “checkValue” fields are used to guarantee the origin of the certificate. This is
signature in the CSI-ECMA specification. (though a seal would be possible as i
ECMA 235).

Figure 3-7 Generalized Certificate’s Structural Components

GeneralizedCertificate ::= SEQUENCE{
certificateBody [0] CertificateBody,
checkValue [1] CheckValue

}

CertificateBody ::= CHOICE{
encryptedBody [0] BIT STRING,
normalBody [1] SEQUENCE{

commonContents [0] CommonContents,
specificContents [1] SpecificContents

}
}

The next sections describe these three main structural components of the Genera
Certificate.

PAC specific contents
Common
Certificate
Contents protection/

delegation
methods

privilege
and other
attributes

restrictions

Check
Value
Security Service V1.5 CSI-ECMA Protocol May 2000 3-87



3

the

ity
SI-

d it.

to
nd
3.6.23 Common Contents fields
CommonContents ::= SEQUENCE{

comConSyntaxVersion [0] INTEGER { version1 (1) }DEFAULT 1,
issuerDomain [1] Identifier OPTIONAL,
issuerIdentity [2] Identifier,
serialNumber [3] INTEGER,
creationTime [4] UTCTime OPTIONAL,
validity [5] Validity,
algId [6] AlgorithmIdentifier,
hashAlgId [7] AlgorithmIdentifier OPTIONAL

}

In the imported definition ofAlgorithmIdentifier , ISO currently permits both a hash
and a cryptographic algorithm to be specified. If this is done, they must appear in
algId field. ThehashAlgId field is present for those cases where a separate hash
algorithm specification is required.

Validity ::= SEQUENCE {
notBefore UTCTime,
notAfter UTCTime

} -- as in [ISO/IEC 9594-8]
 -- Note: Validity is not tagged, for compatibility with the
-- Directory Standard.

comConFieldsSyntaxVersion
Identifies the version of the syntax of the combination of thecommonContentsand the
checkValue fields parts of the certificate.

issuerDomain
The security domain of the issuing authority. Not required if the form of issuerIdent
is a full distinguished name, but required if other forms of naming are in use. In C
ECMA, this is always a directoryName.

issuerIdentity
The identity of the issuing authority for the certificate.

serialNumber
The serial number of the certificate (PAC) as allocated by the issuing authority.

creationTime
TheUTCtime that the certificate was created, according to the authority that create

validity
A pair of start and end times within which the certificate is deemed to be valid.

algId
The identifier of the secret or of the public cryptographic algorithm used to seal or
sign the certificate. If there is a single identifier for both the encryption algorithm a
the hash function, it appears in this field.

hashAlgId
The identifier of the hash algorithm used in the seal or in the signature.
3-88 Security Service V1.5 May 2000



3

ipal
t is
The certificate can be uniquely identified by a combination of theissuerDomain,
issuerIdentity, andserialNumber.

3.6.24 Specific Certificate Contents for PACs
SpecificContents ::= CHOICE{

pac [1] PACSpecificContents
-- only the PAC is used here

}

PACSpecificContents ::= SEQUENCE{
pacSyntaxVersion [0] INTEGER{  version1 (1)} DEFAULT 1,
protectionMethods [2] SEQUENCE OF MethodGroup OPTIONAL,
pacType [4] ENUMERATED{

primaryPrincipal  (1),
temperedSecPrincipal  (2),
untemperedSecPrincipal(3)

}  DEFAULT 3,
privileges [5] SEQUENCE OF PrivilegeAttribute,
restrictions [6] SEQUENCE OF Restriction OPTIONAL,
miscellaneousAtts [7] SEQUENCE OF SecurityAttribute OPTIONAL,
timePeriods [8] TimePeriods OPTIONAL

}

PrivilegeAttribute ::= SecurityAttribute

Restriction ::= SEQUENCE {
howDefined [0] CHOICE {

included [3] BIT STRING
},

-- the actual restriction in a form undefined here
type [2] ENUMERATED  {

mandatory (1),
optional    (2)

}       DEFAULT mandatory,
targets [3] SEQUENCE OF SecurityAttribute    OPTIONAL

}                   -- applies to all targets if this is omitted

pacSyntaxVersion
Syntax version of the PAC.

protectionMethods
A sequence of optional groups ofMethod fields used to protect the certificate from
being stolen or misused. For a full description see below.

pacType
Indicates whether the privileges contained in the PAC are those of a Primary Princ
(e.g., the client) or of a Secondary Principal (e.g., the user). In this specification, i
always a PAC of a secondary principal untempered by the privileges of a Primary
Principal.

privileges
Privilege Attributes of the principal.
Security Service V1.5 CSI-ECMA Protocol May 2000 3-89



3

it

nd

ons

In a

tart
restrictions
This field enables the original owner of the PAC to impose constraints on the
operations for which it is valid. There are two types of restriction:

• Mandatory: If a target to which the restriction applies cannot understand the b
string defining the restriction, access should not be granted.

• Optional: If a target application to which the restriction applies cannot understa
the bit string, it is expected to ignore it.

For CSI-ECMA, it is not mandatory to generate restrictions, but mandatory restricti
cannot be ignored. If not understood, the PAC cannot be accepted.

miscellaneousAtts
Security attributes which are neither privileges attributes nor restrictions attributes.
PAC, this may include identity attributes such as Audit Identity. For the CSI-ECMA
specification, this is the only miscellaneous attribute expected.

timePeriods
This field adds further time restrictions to the validity field of thecommonContents.
Either startTime or endTime can be optional. TheTimePeriods control is passed if
the time now is within any of the sequence periods, or if there is a period with a s
before now and noendTime, or there is a period with an end after now and no
startTime.

3.6.24.1 Protection Methods

A method consists of a method id and parameters (methodParams). The method id
determines the syntax for the type ofmethodParams.

Method ::= SEQUENCE{
methodId [0] MethodId,
methodParams [1] SEQUENCE OF Mparm OPTIONAL

}
MethodId ::= CHOICE{

predefinedMethod [0] ENUMERATED {
controlProtectionValues    (1),
ppQualification (2),
targetQualification (3),
delegateTargetQualification  (4)

}
}

Mparm ::= CHOICE{
pValue [0] PValue,
securityAttribute [1] SecurityAttribute

}

PValue ::= SEQUENCE{
pv [0] BIT STRING
algorithmIdentifier [1] AlgorithmIdentifier OPTIONAL

}

3-90 Security Service V1.5 May 2000



3

ept
The

lifier
CertandECV ::=   SEQUENCE {
certificate [0] GeneralizedCertificate,
ecv [1] ECV OPTIONAL

}
- ECV is defined in later

methodId
Identifies a protection method. Methods can be used in any combination, and exc
where stated otherwise, multiple occurrences of the same method are permitted.
choice of methodId determines the permitted choices of method parameters in the
methodParams construct as described below.

methodParams
Parameters for a protection method. The semantics of each protection method is
described in section Section 3.1.9.2, “Cryptographic Profiles,” on page 3-15.

For the Primary Principal Qualification Method, theMethodId is ppQualification and
the syntax ofMparm is securityAttribute . Its value is defined in Section 3.6.8, “PPID
Method,” on page 3-73.

For the PV/CV method, theMethodId is:controlProtectionValuesand the syntax of
Mparm is:pValue.

For the Target Qualification protection method, theMethodId is targetQualification
and the syntax forMparms is securityAttribute .

For the Delegate/Target Qualification protection method, theMethodId is
delegatetargetQualification and the syntax forMparms is securityAttribute .

The security attribute in the target and delegate/target protection method is a qua
attribute as defined in Section 3.6.20, “Qualifier Attributes,” on page 3-86.

3.6.24.2 External Control Values Construct

When using thecontrolProtectionValuesmethod a PAC protected under that method
may be accompanied by one or more control values and indices to the method
occurrences in the certificate to which they apply. Also, when such a certificate is
being issued to a requesting client, the CV values it will need in order to use that
certificate may need to be returned with it.

ECV ::= SEQUENCE {
crypAlgIdentifier [0] AlgorithmIdentifier OPTIONAL,
cValues [1] CHOICE {

encryptedCvalueList [0] BIT STRING,
individualCvalues [1] CValues

}
}

CValues ::= SEQUENCE OF SEQUENCE {
index [0] INTEGER,
value [1] BIT STRING

}

Security Service V1.5 CSI-ECMA Protocol May 2000 3-91



3

e

nt

the
crypAlgIdentifier
This specifies the encryption algorithm of the control values.

cValues
An ECV construct can contain either an encrypted list of control values in the
encryptedCvalueListfield, or a list of individual control values inindividualCvalues.

If the encryptedCvalueList choice is made, the whole list is encrypted in bulk, but th
in-clear contents of this field are expected to have the syntaxCValues. If the
individualCvalues choice is made, values are individually encrypted in the value
fields of the list. Encryption is always done under the basic key protecting the
operation.

In the case of thecontrolProtectionValuesmethod, value is a CV, and index is then the
index of the method occurrence in the certificate, starting at 1.

3.6.25 Check Value

In this specification, a PAC is protected by being digitally signed by the issuer.

A signature may be accompanied by information identifying the Certification
Authority under which the signature can be verified, and with an optional convenie
reference to or the actual value of the user certificate for the private key that the
signing authority used to sign the certificate.

CheckValue ::= CHOICE{
signature [0]   Signature
-- only signature supported here

}

Signature ::= SEQUENCE{
signatureValue [0] BIT STRING,
publicAlgId [1] AlgorithmIdentifier    OPTIONAL,
hashAlgId [2] AlgorithmIdentifier    OPTIONAL,
issuerCAName [3] Identifier    OPTIONAL,
caCertInformation [4] CHOICE {

caCertSerialNumber [0]    INTEGER,
certificationPath [1] CertificationPath

} OPTIONAL
}
--CertificationPath is imported from [22]

signatureValue
The value of the signature. It is the result of a public encryption of a hash value of
certificateBody.

publicAlgId
Only present if the certificate body is encrypted, then it is a duplication of thealgId
value in "commonContents." This is not required in CSI-ECMA.

hashAlgId
Only present if the certificate body is encrypted, then it is a duplication of the
hashAlgId value in “commonContents.” This is not required in CSI-ECMA.
3-92 Security Service V1.5 May 2000



3

this

t of

l

issuerCAName
The identity of the Certification Authority that has signed the user certificate
corresponding to the private key used to sign this certificate.

caCertInformation
Contains either just a certificate serial number which together with theissuerCAName
uniquely identifies the user certificate corresponding to the private key used to sign
certificate, or a full specification of a certification path via which the validity of the
signature can be verified. The latter option follows the approach used in[22].

The Sealstructure is used in theTokens defined above.

Seal ::= SEQUENCE{
sealValue [0] BIT STRING,
secretAlgId [1] AlgorithmIdentifier OPTIONAL,
hashAlgId [2] AlgorithmIdentifier OPTIONAL,
targetName [3] Identifier OPTIONAL,
keyId [4] INTEGER OPTIONAL

}

sealValue
The value of the seal. It is the result of a secret encryption of a hash value of a se
octets (which are theDER encoding of some ASN.1 type)

secretAlgId
An optional indicator of the sealing algorithm.

hashAlgId
Only present if thesecretAlgId does not specify which hashing algorithm is used.

targetName
This field identifies thetargetAEF or target with which the secret key used for the sea
is shared.

keyId
This serial number together with thetargetName uniquely identifies the secret key
used in the seal.

3.6.26 Basic Key Distribution

The TargetKeyBlock is structured as follows:

• An identifier (kdSchemeOID) for the key distribution scheme being used, which
takes the form of an OBJECT IDENTIFIER.

• A part which, if present, the target AEF needs to pass on to its KDS
(targetKDSPart - will be present only when the target AEF's KDS is different from
the initiator's).

• A part which, if present, can be used directly by thetargetAEF (targetPart).

When atargetAEF using a separateKDS receives thetargetKeyBlock, it first checks
whether it supports the key distribution scheme indicated inkdsSchemeOID. Two
different cases need to be considered:
Security Service V1.5 CSI-ECMA Protocol May 2000 3-93



3

nt

the
ary
n

.

re

arget

ting
1. Only thetargetPart is present. The targetAEF computes the basic key directly,
using the information present in thetargetPart. The syntax oftargetPart is scheme
dependent. Expiry information optionally can be present intargetPart. If supported
by the scheme, the Primary Principal attributes of the initiator will also be prese
for PAC protection under the Primary Principal Qualification method (see above).

2. Only thetargetKDSPart is present. ThetargetAEF forwards theTargetKeyBlock
to its KDS. In return, it receives a scheme dependent data structure which allows
target AEF to determine the basic key and, if supported by the scheme, the Prim
Principal attributes of the initiator for PAC protection purposes. Expiry informatio
can optionally be present in thetargetKDSPart.

The form of this information depends on the key distribution configuration in place

3.6.27 Keying Information Syntax
TargetKeyBlock ::= SEQUENCE {

kdSchemeOID [2]   OBJECT IDENTIFIER,
targetKDSpart [3]   ANY OPTIONAL,

-- depending on kdSchemeOID
targetPart [4]   ANY OPTIONAL

-- depending on kdSchemeOID
}

kdSchemeOID
Identifies the key distribution scheme used. Allows thetargetAEF to determine rapidly
whether or not the scheme is supported. It also allows for the easy addition of futu
schemes.

targetKDSpart
Part of the Target Key Block which is processable only by theKDS of the targetAEF.
This part is sent by the targetAEF to its localKDS, in order to get the basic key which
is in it. It must always contain the name of a target “served” by thetargetAEF in
question. The mapping between the name of the application and the name of the t
AEF is known to the targetAEF's KDS which is able to authenticate whichtargetAEF
is issuing the request for translating thetargetKDSpart . It can then verify that the
AEF is one which is responsible for the application name contained in the
targetKDSpart . If it is, the key is released and is sent protected back to the reques
AEF. TargetKDSpart should include data that enables theKDS of the targetAEF to
authenticate theKDS of the initiator. When the “Primary Principal Qualification”
protection method needs to be used for thePAC, unless there is an accompanying
targetPart, targetKDSpart must contain the appropriate primary principal security
attributes (which is always true in this specification).

targetPart
A part of the Target Key Block which is processed only by the targetAEF. When there
is no targetKDSpart it is processable directly; otherwise, it can only be processed
after the targetKDSpart has been processed by theKDS of the targetAEF, and the
appropriate Keying Information has been returned to theAEF. The targetPart construct
3-94 Security Service V1.5 May 2000



3

the

he

nt

235

Key

ng
should include data that enables the target AEF to authenticate theKDS of the initiator.
When the “Primary Principal Qualification” protection method needs to be used for
PAC, targetPart must contain the primary principal security attributes.

3.6.28 Summary of Key Distribution Schemes

This specification defines three key distribution schemes. These are:

1. symmIntradomain: using a secret key technology within a domain. In this case, t
targetKDSpart of theTargetKeyBlock is not supplied and thetargetPart contains
a Kerberos ticket.

2. hybridInterdomain : In this case, thetargetPart field is not supplied. The
PublicTicket contains a Kerberos ticket.

3. asymmetric: thetargetKDSpart is not supplied and thetargetPart contains an
SPKM_REQ.

The following table shows the different syntaxes used fortargetKDSpart and
targetPart for the defined KD-schemes. “Missing” in the table means that the releva
construct is not supplied.

Further options are possible by defining further kd-schemes. For example, ECMA
also defines options for:

• initiators with public keys and targets with secret keys

• initiators with secret keys and targets with public keys

3.6.29 CSI-ECMA Secret Key Mechanism

In this scheme, the client and target each share different secret keys with the same
Distribution Server.

To establish the association, between the client and target, the client obtains a
targetKeyBlock from its KDS containing a basic key encrypted under the target’s lo
term key. On receipt of thetargetKeyBlock, the target can extract the basic key from
it.

The symmIntradomainkey distribution scheme

• has a mechanism id ofCSI_ECMA_Secret, and

Table 3-10 Syntaxes Used for targetKDSpart and targetPart

KD-Scheme name kdSchemeOID targetKDSpart targetPart

symmIntradomain {kd-schemes 1} Missing Ticket

hybridInterdomain {kd-schemes 3} PublicTicket Missing

asymmetric {kd-schemes 6} Missing SPKM_REQ
Security Service V1.5 CSI-ECMA Protocol May 2000 3-95



3

• uses a Kerberos ticket in thetargetKeyBlock of the initial_context_token.
An unmodified KerberosTGS can be used as theKDS in this case.

3.6.29.1 Profile of Ticket as Used in SymmIntradomain Scheme

The following table indicates which optional fields must be present in the Kerberos
ticket for theCSI_ECMA_Secret mechanism and indicates the values which are
required to be present in all fields.

The Kerberos Ticket'sauthorization_data field contains thePPID of the context
initiator, as formally defined below.

ECMA-AUTHORIZATION-DATA-TYPE ::= INTEGER { ECMA-ADATA (65) }
ECMA-AUTHORIZATION-DATA ::= SEQUENCE {

ecma-ad-type [0] ENUMERATED  {ppidType  (0)},
ecma-ad-value [1] CHOICE  {ppidValue [0] SecurityAttribute

}
}

ppidType
Indicates the type of the authorization data which is included in theTicket.

Table 3-11 Kerberos Ticket’s Mechanism Fields

Field Value/Constraint

tkt-vno 5

realm ticket issuer's domain name in Kerberos realm name form

sname target application name including the realm of the target

- EncTicketPart encrypted with long term key of target AEF

-- flags only bits 6, 10 and 11 can be meaningful in the context of the
CSI-ECMA protocol, the rest are ignored

-- key the basic key

-- crealm initiator domain name in Kerberos realm name form

-- cname principal name of the initiator (in the case of delegation the
cname will be that of the delegate)

-- transited not used

-- authtime the time at which the initiator was authenticated

-- starttime not used

-- endtime the time at which the ticket becomes invalid

-- renew-till not used

-- caddr not used

-- authorization-data contains the PPID corresponding to cname
3-96 Security Service V1.5 May 2000



3

.

key
ppidValue
This value is used in theppQualification PAC protection method, as described above

3.6.30 CSI-ECMA Hybrid Mechanism

In this scheme, the initiator shares a secret key with itsKDS and the target shares a
secret key with itsKDS (which is different). In addition, eachKDS possesses a
private/public key pair.

To establish the client-target association, the client gets atargetKeyBlock from its
KDS containing the basic key encrypted under a temporary key and the temporary
encrypted under the target’sKDS public key. ThetargetKeyBlock is also signed using
the initiator’sKDS private key.

On receipt of thetargetKeyBlock, the target transmits it to itsKDS and gets back the
basic key encrypted under the long term secret key it shares with itsKDS.

The hybridInterdomain key distribution scheme

• has a mechanism id ofCSI_ECMA_Hybrid in the IOR , and

• uses a Public ticket in thetargetKeyBlock of the initial_context_token, as
described below.

A modified KerberosTGS can be used as theKDS in this case.

3.6.30.1 Hybrid Inter-domain Key Distribution Scheme Data Elements

PublicTicket ::= SEQUENCE{
krb5Ticke [0]   Ticket,
publicKeyBlock [1]   PublicKeyBlock

}

PublicKeyBlock ::= SEQUENCE{
signedPKBPart [0] SignedPKBPart,
signature [1] Signature OPTIONAL,
certificate [2] Certificate OPTIONAL

}

SignedPKBPart ::= SEQUENCE{
keyEstablishmentData [0] KeyEstablishmentData,
encryptionMethod [1] AlgorithmIdentifier  OPTIONAL,
issuingKDS [2] Identifier,
uniqueNumber [3] UniqueNumber,

validityTime [4] TimePeriods,
creationTime [5] UTCTime

}

UniqueNumber ::= SEQUENCE{
timeStamp [0] UTCTime,
random [1] BIT STRING
Security Service V1.5 CSI-ECMA Protocol May 2000 3-97



3

t is
}

krb5Ticket
The Kerberos Ticket which contains the basic key. The encrypted part of this ticke
encrypted using the key found within theencryptedPlainKey field of the
KeyEstablishmentData in the PublicKeyBlock.

publicKeyBlock
Contains the key used to protect thekrb5Ticket encrypted using the public key of the
recipient and signed by the encryptor (i.e., the context initiator's KD-Server).

signedPKBPart
The part of thepublicKeyBlock which is signed. ThekeyEstablishmentDatafield
contains theKeyEstablishmentData(i.e., the actual encrypted temporary key).

• The encryptionMethod indicates the algorithm used to encrypt theencryptedKey.

• The issuingKDS is the name of the KD-Server which produced thePublicTicket.

• The uniqueNumber is a value (containing a timestamp and a random number)
which prevents replay of thePublicTicket.

• validityTime specifies the times for which thePublicTicket is valid.

• creationTime contains the time at which thePublicTicket was created.

signature
Contains the signature calculated by theissuingKDS on thesignedPKBPart field.

certificate
If present, contains the public key certificate of the issuingKDS.

3.6.30.2 Key Establishment Data Elements

These are used in public key establishment mechanisms.

KeyEstablishmentData ::= SEQUENCE {
encryptedPlainKey [0] BIT STRING,-- encrypted PlainKey
targetName [1] Identifier   OPTIONAL,
nameHashingAlg [2] AlgorithmIdentifier OPTIONAL

}

HashedNameInput ::= SEQUENCE {
hniPlainKey [0]   BIT STRING,-- same as plainKey
hniIssuingKDS [1]   Identifier

PlainKey ::= SEQUENCE {
plainKey [0]   BIT STRING,  -- The cleartext key
hashedName [1]   BIT STRING

}

encryptedPlainKey
Contains the encrypted key. The BIT STRING contains the result of encrypting a
PlainKey structure.
3-98 Security Service V1.5 May 2000



3

of

aling

be

the
targetName
If present, contains the name of the target application. This is necessary for some
the KD-schemes.

nameHashingAlg
Specifies the algorithm which is used to calculate thehashedNamefield of the
PlainKey.

hniPlainKey
hniIssuingKDS
Used as input to a hashing algorithm as a general means to prevent ciphertext ste
attacks.

plainKey
Contains the actual bits of the plaintext key which is to be established.

hashedName
A hash of the name of the encryptingKDS calculated using the plainkey andKDS
name as input (within theHashedNameInputstructure). The algorithm identified in
nameHashingAlg is used to calculate this value.

targetName
If present, contains the name of the target for which thePublicTicket was originally
produced. This may be different from the targetIdentity field of the
initialContextToken if caching ofPublicTickets has been implemented.

3.6.30.3 Key Establishment Algorithm

The PublicKeyBlock in this mechanism and theSPKM_REQ construct used in
scheme 6 requires a sequence of key establishment algorithm identifier values to
inserted into thekey_estb_setfield. The OBJECT IDENTIFIER below is defined as
the (single) key establishment “algorithm” for ECMA mechanisms:

gss-key-estb-alg AlgorithmIdentifier ::= {kd-schemes, NULL }

gss-key-estb-alg
This AlgorithmIdentifier identifies the key establishment algorithm value to be used
within the key_estb_setfield of an SPKM_REQ data element as the one defined by
ECMA.

This algorithm is used to establish a symmetric key for use by both the initiator and
target AEF as part of the context establishment. The correspondingkey_estb_reqfield
of theSPKM_REQ will be a BIT STRING the content of which is aDER encoding of
the KeyEstablishmentDataelement.
Security Service V1.5 CSI-ECMA Protocol May 2000 3-99



3

3.6.30.4 Profile of Ticket as Used in Hybrid Interdomain Scheme

Note that thekrb5Ticket part of this is identical to that used in the
CSI_ECMA_Secret key mechanism except that theEncTicketPart is encrypted with
the temporary key used betweenKDS rather than the target’s key.

Table 3-12 Ticket as Used in Hybrid Interdomain Scheme

Field Value/Constraint

krb5Ticket

- tkt-vno 5

- realm initiator domain name in Kerberos realm name form

- sname target application name including the realm of the
target

-- EncTicketPart encrypted with temporary key (which is in turn
encrypted within the keyEstablishmentData field)

--- flags only bits 6, 10 and 11 can be meaningful in the context
of the CSI-ECMA protocol, the rest are ignored

--- key the basic key

--- crealm initiator domain name in Kerberos realm name form

--- cname principal name of the initiator (in the case of delegation
the cname will be that of the delegate)

--- transited not used

--- authtime the time at which the initiator was authenticated

--- starttime not used

--- endtime the time at which the ticket becomes invalid

--- renew-till not used

--- caddr not used

--- authorization-data contains the PPID corresponding to cname

publicKeyBlock

- signedPKBPart

-- encryptedKey KeyEstablishmentData structure

-- encryptionMethod gss-key-estb-alg

-- issuingKDS X.500 name of initiator's KDS (the signer)

-- uniqueNumber creation time of publicKeyBlock plus a random bit
string

-- validityTime only one period allowed
3-100 Security Service V1.5 May 2000



3

r use

k is
3.6.31 CSI-ECMA Public Mechanism

In this scheme, both client and target possess a private/public key pair and neithe
a KDS.

To establish the client-target association, the client constructs atargetKeyBlock
containing a basic key encrypted under the target’s public key. The target key bloc
signed with the client’s private key. On receipt of thetargetKeyBlock, the target
directly establishes a basic key from it.

The asymmetric key distribution scheme:

• has a mechanism id ofCSI_ECMA_Public, and

• uses anSPKM_REQ in the targetKeyBlock of the initial_context_token.

This mechanism has only a profile of theSPKM_REQ as defined below.

3.6.31.1 Profile of SPKM_REQ Used in Public Key Mechanism

The following table indicates which optional fields must be present in the
SPKM_REQ in the targetKeyBlock for the CSI_ECMA_Public mechanism and
indicates the values which are required to be present in all fields.

-- creationTime creation time of publicKeyBlock

- signature contains all the signing information as well as the
actual signature bits

- certificate optional

Table 3-13 SPKM-REQ Used in Public Key Mechanism

Field Value/Constraint

requestToken

- tok_id not used - fixed value of ‘0'

- context_id not used - fixed value of bit string containing one zero bit

- pvno not used - fixed value of bit string containing one zero bit

- timestamp creation time of SPKM_REQ - required

- randSrc random bit string

- targ_name X.500 Name of target AEF

- src_name X.500 Name of initiator

- req_data

-- channelId not used - octet string of length one value ‘00'H

Table 3-12 Ticket as Used in Hybrid Interdomain Scheme(Continued)

Field Value/Constraint
Security Service V1.5 CSI-ECMA Protocol May 2000 3-101



3

nd
Definitions of KeyEstablishmentDataandgss-key-estb-algare given in
Section 3.6.30, “CSI-ECMA Hybrid Mechanism,” on page 3-97.

3.6.32 Dialogue Key Block

Dialogue Key Block constructs are used to specify how the integrity dialogue key a
confidentiality dialogue key should be derived from the basic key, and specify the
cryptographic algorithms with which the keys should be used. Dialogue keys are
explained above. The syntax is as follows:

 DialogueKeyBlock   ::=   SEQUENCE {
integKeySeed [0] SeedValue,
confKeySeed [1] SeedValue,
integKeyDerivationInfo [2] KeyDerivationInfo OPTIONAL,
confKeyDerivationInfo [3] KeyDerivationInfo OPTIONAL,
integDKuseInfo [4] DKuseInfo OPTIONAL,
confDKuseInfo [5] DKuseInfo OPTIONAL

}

SeedValue  ::= SEQUENCE {
timeStamp [0] UTCTime OPTIONAL,
random [1] BIT STRING

}

KeyDerivationInfo::= SEQUENCE {
owfId [0] AlgorithmIdentifier,
keySize [1] INTEGER

}

DKuseInfo    ::= SEQUENCE {

-- seq_number missing

-- options not used - all bits set to zero

-- conf_alg not used - use NULL CHOICE

-- intg_alg not used - use a SEQUENCE OF with zero elements

- validity mandatory

- key_estb_set only one element supplied containing gss-key-estb-alg

- key_estb_req contains KeyEstablishmentData with targetApplication field
missing

- key_src_bind missing

req_integrity sig_integ mandatory

certif_data only userCertificate field supported

auth_data missing

Table 3-13 SPKM-REQ Used in Public Key Mechanism(Continued)

Field Value/Constraint
3-102 Security Service V1.5 May 2000



3

s,

s,

er

.

s

es

y

useAlgId [0] AlgorithmIdentifier,
useHashAlgId [1] AlgorithmIdentifier OPTIONAL

}

integKeySeed
A random number, optionally concatenated with a time value to ensure uniquenes
used as input to the one way function specified inintegKeyDerivationInfo .

confKeySeed
A random number, optionally concatenated with a time value to ensure uniquenes
used as input to the one way function specified inconfKeyDerivationInfo .

integKeyDerivationInfo
Key derivation information for the integrity dialogue key, as follows:

owfId
The one way algorithm which takes the basic key XOR the seed as input,
resulting in the integrity dialogue key.

keySize
The size of the key in bits. If the algorithm identified by owfId produces a larg
key, it is reduced by masking to this length, losing its most significant end.

confKeyDerivationInfo
Key derivation information for the confidentiality dialogue key. The fields in this
construct have the same meanings as defined above for the integrity dialogue key

integDKuseInfo
Information describing how the integrity dialogue key is to be used, as follows:

useAlgId
The secret or public reversible encryption algorithm with which the integrity
dialogue key is to be used.

useHashAlgId
The one way function with which the integrity dialogue key is to be used. It i
the hash produced by this algorithm on the data to be protected which is
encrypted usinguseAlgId.

confDKuseInfo
Information describing how the confidentiality key is to be used. TheuseHashAlgId
construct is not used here.

3.7 Integrating SSL with CORBA Security

3.7.1 Introduction

This section defines how SSL [21] is integrated with CORBA Security. SSL provid
CSI level 0 (see Appendix D, Section D.7.2, “Common Secure Interoperability
Levels,” on page D-12) functionality only. This level of functionality is achieved onl
if the optional authentication features of SSL are used.
Security Service V1.5 Integrating SSL with CORBA Security May 2000 3-103



3

for

e
ity.

The

ly
s of

r the

e

e

col
eral
3.7.2 Cryptographic Profiles

All of the cryptographic profiles defined by SSL may be used by ORBs using SSL
Security.

3.7.3 IOR Encoding

A new kind of security tag is defined, for use in the component tag sequence in th
IIOP IOR profile body, to describe the use of Secure Transports with CORBA Secur
This enables the future use of combinations of security mechanisms and secure
transports.

The IIOP TAG identifying the SSL secure transport isTAG_SSL_SEC_TRANS . The
tag component data described below must be encapsulated using CDR encoding.
data structure associated with this tag is as follows:

struct SSL {
Security::AssociationOptions target_supports;
Security::AssociationOptions target_requires;
unsigned short port;

};

The definition of association options is the same as for the CSI protocols. SSL on
supports client and target authentication if the optional certificate exchanger feature
SSL are supported.

Unlike the CSI mechanism TAGs, the SSL TAG does not include cryptographic
profiles as cryptography is negotiated as part of the SSL session establishment. Fo
same reason the TAG does not include a security name for the target.

The port field contains the port number to be used instead of the port defined in th
accompanying IIOP profile body, if SSL is selected by the client. It contains the
TCP/IP port number (at the specified host) where the target agent is listening for
connection requests. The agent must be ready to process IIOP messages on
connections accepted at this port.

As with the other secure interoperability options, if the client invokes the target
without the appropriate level of security (e.g., if the client is not secure and simply
invokes the target ignoring all security TAGs in the profile) the target shall raise th
CORBA::NO_PERMISSION exception.

3.7.4 Relation to SECIOP

As SSL provides a secure transport layer over TCP/IP, the CORBA SECIOP proto
is not required when using SSL. Instead, the connection rules of IIOP (see the Gen
Inter-ORB Protocol chapter of theCommon Object Request Broker: Architecture and
Specification) are applied to SSL (which itself uses TCP).
3-104 Security Service V1.5 May 2000



3

use
P
rity

nd

curity

ion

e
e

ted

f a

eats

t-
flow
3.8 DCE-CIOP with Security

This section describes how to provide secure interoperability between ORBs which
the DCE Common Inter-ORB Protocol (DCE-CIOP). It describes how the DCE-CIO
transport layer should handle security (for example, how it should interpret the secu
components of theIOR profile when selecting DCE Security Services for a request a
secure invocation).

3.8.1 Goals of Secure DCE-CIOP

The original goals of DCE-CIOP, documented in theCommon Object Request Broker:
Architecture and Specification, are maintained and enhanced by Secure DCE-CIOP:

• Support multi-vendor, mission critical, enterprise-wide, secure ORB-based
applications.

• Leverage services provided by DCE wherever appropriate.

• Allow efficient and straightforward implementation using public DCE APIs.

• Preserve ORB implementation freedom.

Secure DCE-CIOP achieves these goals by taking advantage of the integrated se
services provided by DCE Authenticated RPC. It is not a goal of the Secure DCE-
CIOP specification to support the use of arbitrary security mechanisms for protect
of DCE-CIOP messages.

3.8.2 Secure DCE-CIOP Overview

Secure interoperability between ORBs using the DCE-CIOP transport relies on th
DCE Security Services and the DCE Authenticated RPC runtime that utilizes thos
services.

The DCE Security Services (specified in [6]), as employed by the DCE Authentica
RPC runtime (specified in [7] and the [8]), provide the following security features:

• cryptographically secured mutual authentication of a client and target,

• ability to pass client identity and authorization credentials to the target as part o
request,

• protection against undetected, unauthorized modification of request data,

• cryptographic privacy of data, and

• protection against replay of requests and data.

The RPC runtime provides the communication conduit for exchanging security
credentials between communicating parties. It protects its communications from thr
such as message replay, message modification, and eavesdropping.

The DCE-CIOP uses DCE RPC APIs to request security features for a given clien
target communication binding. Subsequent DCE-CIOP messages on that binding
over RPC and thus are protected at the requested levels.
Security Service V1.5 DCE-CIOP with Security May 2000 3-105



3

ure

E-

P is

ort

rt
ity

B

s

y,
st be

t
.

re
This Secure DCE-CIOP specification defines theIOR Profile components required to
support Secure DCE-CIOP. Each component is identified by a unique tag, and the
encoding and semantics of the associatedcomponent_data are specified. Client
secure association requirements, as indicated by client-side policy, and target sec
association requirements, as specified in the targetIOR Profile security components,
are mapped to DCE Security Services. Finally, the use of DCE APIs to protect DC
CIOP messages is described.

3.8.2.1 IOR Security Components for DCE-CIOP

The information necessary to invoke secure operations on objects using DCE-CIO
encoded in anIOR in a profile identified byTAG_MULTIPLE_COMPONENTS . The
profile_data for this profile is aCDR encapsulation (see “CDR Transfer Syntax” in
the General Inter-ORB Protocol chapter of theCommon Object Request Broker:
Architecture and Specification) of the MultipleComponentProfile type, which is a
sequence ofTaggedComponent structures. These types are described in the ORB
Interoperability Architecture chapter of theCommon Object Request Broker:
Architecture and Specification.

The Multiple Component Profile contains the tagged components required to supp
DCE-CIOP, described in the DCE ESIOP chapter of theCommon Object Request
Broker: Architecture and Specification, as well as the components required to suppo
security for DCE-CIOP. The general security components are described in “Secur
Components of the IOR” on page 3-8. The DCE-specific security component and
semantics for the common security components are described here.

Although a conforming implementation of Secure DCE-CIOP is only required to
generate and recognize the components defined here and in the General Inter-OR
Protocol chapter of theCommon Object Request Broker: Architecture and
Specification, the profile may also contain components used by other kinds of ORB
transports and services. Implementations should be prepared to encounter profile
identified byTAG_MULTIPLE_COMPONENTS that do not support DCE-CIOP.
Unrecognized components should be preserved but ignored. Although an
implementation may choose to order the components in a profile in a particular wa
other implementations are not required to preserve that order. Implementations mu
prepared to handle profiles whose components appear in any order.

TAG_DCE_SEC_MECH

For a profile to support Secure DCE-CIOP, it must include exactly one
TAG_DCE_SEC_MECH component. Presence of this component indicates suppor
for the (non-GSSAPI) “DCE Security with Kerberos V5 with DES” mechanism type
The component_data field contains an authorization service identifier and an
optional sequence of tagged components.

Future versions of DCE Security that require different information than what is
provided by thecomponent_data structure described below are expected to be
supported with a new component tag, rather than with revisions to the data structu
associated with theTAG_DCE_SEC_MECH tag.
3-106 Security Service V1.5 May 2000



3

t

one

e

The DCE Security Mechanism component is defined by the following OMG IDL:

module DCE_CIOPSecurity {

const IOP::ComponentId TAG_DCE_SEC_MECH = 103

// CORBA IDL doesn't (yet) support const octet
//
// const octet DCEAuthorizationNone = 0;
// const octet DCEAuthorizationName = 1;
// const octet DCEAuthorizationDCE = 2;

typedef unsigned short DCEAuthorization;

const DCEAuthorization DCEAuthorizationNone = 0;
const DCEAuthorization DCEAuthorizationName = 1;
const DCEAuthorization DCEAuthorizationDCE = 2;

// since consts of type octet are not allowed in IDL the constant
// values that can be assigned to the authorization_service field
// in the DCESecurityMechanismInfo is declared as unsigned shorts.
// when they actually get assigned to the authorization_service field
// they should be assigned as octets.

struct DCESecurityMechanismInfo {
octet authorization_service;
sequence <TaggedComponent> components;

};
};

A TaggedComponent structure is built for the DCE Security Mechanism componen
by setting the tag member toTAG_DCE_SEC_MECH, and setting the
component_data member to aCDR encapsulation of a
DCESecurityMechanismInfo structure.

The authorization_service Field

The authorization_service field is used to indicate what authorization service is
required by the target, and therefore must be supported by the authenticated RPC
runtime for invocations on thisIOR. Two authorization models are supported:
DCEAuthorizationName andDCEAuthorizationDCE with a third identifier,
DCEAuthorizationNone , to indicate that no authorization is required.

The components Field

Thecomponents field contains a sequence of zero or more tagged components, n
of which may appear more than once, from the following list of common securityIOR
components:TAG_ASSOCIATION_OPTIONS , andTAG_SEC_NAME .

Each of these components, defined in Section 3.1.4.1, “Security Components of th
IOR,” on page 3-8, may be present either in the components field of the
DCESecurityMechanismInfo structure, or at the top level of theIOR profile. When
Security Service V1.5 DCE-CIOP with Security May 2000 3-107



3

ared
ents

t the

nd
is
ent.

-14.
one of these components appears at the top level of the profile, its data may be sh
by other security mechanisms in the profile. When it appears in the nested compon
field of DCESecurityMechanismInfo , its data is available only to the DCE Security
mechanism and overrides the data of an identically-tagged component, if present, a
top level of the profile.

3.8.2.2 TAG_ASSOCIATION_OPTIONS

The association options component, described in Section 3.1.4.1, “Security
Components of the IOR,” on page 3-8, contains flags indicating which protection a
authentication services the target supports and which it requires. This component
optional for Secure DCE-CIOP; defaults are used when the component is not pres

The way in which association options are interpreted for use with DCE security is
reflected in Table 3-14 shows how an association option is mapped to a DCE RPC
protection level and authentication service.

If the TAG_ASSOCIATION_OPTIONS component is not present, then the target is
assumed both to support and to requirerpc_c_protect_level_default and
rpc_c_authn_dce_secret . (The value ofrpc_c_protect_level_default is defined
by the DCE implementation or by a site administrator.)

The target_supports Field

When an association option is set in thetarget_supports field of the
TAG_ASSOCIATION_OPTIONS component_data , it indicates that the target
supports invocations which use Secure DCE-CIOP with the protection level and
authentication service that correspond to the selected option, as shown in Table 3
Any or all of the association options may be set in thetarget_supports field. The
options set in thetarget_supports field will be compared with client-side policy
required options to determine if the target can support the client’s requirements.

Table 3-14 Association Option Mapping to DCE Security

Association Option DCE RPC Protection Level DCE RPC Authentication
Service

NoProtection rpc_c_protect_level_none rpc_c_authn_none

Integrity rpc_c_protect_level_pkt_integrity rpc_c_authn_dce_secret

Confidentiality rpc_c_protect_level_pkt_privacy rpc_c_authn_dce_secret

DetectReplay rpc_c_protect_level_pkt rpc_c_authn_dce_secret

DetectMisordering rpc_c_protect_level_pkt rpc_c_authn_dce_secret

EstablishTrustInTarget rpc_c_protect_level_connect rpc_c_authn_dce_secret

EstablishTrustInClient rpc_c_protect_level_connect rpc_c_authn_dce_secret

tag not present rpc_c_protect_level_default rpc_c_authn_dce_secret
3-108 Security Service V1.5 May 2000



3

ort

RPC
the

d in

the
tions.

h

al

of
me
Although, for the DCE security mechanism, a single selected option may imply
support for several other options (e.g., selection of the Integrity option implies supp
for DetectReplay , DetectMisordering , andEstablishTrustInClient ) it is
recommended that every supported option be explicitly set in thetarget_supports
field to facilitate comparison with client requirements.

The target_requires Field

When an association option is set in thetarget_requires field of the
TAG_ASSOCIATION_OPTIONS component_data , it indicates that the target
requires invocations secured with at least the protection level and authentication
service that correspond to the selected option, as shown in Table 3-14. Since DCE
supports a range of protection levels, each of which provides all the protection of
level below it and also some additional protection, selecting multipletarget_requires
options does not make sense. For DCE, no more than one option need be selecte
the target_requires field.

If a TAG_ASSOCIATION_OPTIONS component is contained within the
DCESecurityMechanismInfo structure, thetarget_requires field may conform to
the DCE semantics (i.e., no more than one option selected). If other security
mechanisms are sharing theTAG_ASSOCIATION_OPTIONS component, and
perhaps using different rules for interpreting thetarget_requires field, then the
target_requires field may have several options selected. The “DCE Association
Options Reduction” algorithm, described in Section 3.8.3.1, “Secure DCE-CIOP
Operational Semantics,” on page 3-112, handles both cases and is used to select
appropriate DCE secure invocation services given a set of required association op

The EstablishTrustInTarget option in thetarget_requires field is meaningless,
and is therefore ignored.

3.8.2.3 TAG_SEC_NAME

The security name component contains the DCE principal name of the target.
Generally, this is a global principal name that includes the name of the cell in whic
the target principal’s account resides. If a cell-relative principal name (i.e., the cell
prefix does not appear) is specified, the local cell is assumed. Cell-relative princip
names are only appropriate for use inIORs that are consumed by clients in the same
cell in which the target resides. When anIOR containing a cell-relative principal name
in the TAG_SEC_NAME component crosses a cell boundary, the cell-relative
principal name should be replaced with a global name.

The format of a “human-friendly” DCE principal name is described in section 1.13
[6]. It is a string containing a concatenated cell name and cell-relative principal na
that looks like:

/.../cell-name/cell-relative-principal-name

For example, the principal with the cell-relative name “printserver ” in the
“mis.prettybank.com” cell has the global principal name:
Security Service V1.5 DCE-CIOP with Security May 2000 3-109



3

d,

P
not

PC

on
n

d to
.

/.../mis.prettybank.com/printserver

The component_data member of theTAG_SEC_NAME component is set to the
string value of the DCE principal name. The string is represented directly in the
sequence of octets, including the terminating NULL.

If the TAG_SEC_NAME component is not present, then a value of NULL is assume
indicating that the client will depend on the DCE authenticated RPC runtime to
retrieve the DCE principal name of the target, identified in the IOR by the DCE-CIO
string binding and binding name components. This case indicates that the client is
interested in authentication of the target identity.

3.8.3 DCE RPC Security Services

This section provides details about the protection provided by DCE Authenticated R
authorization services, protection levels, and authentication services. See the
rpc_binding_set_auth_info() man page in [9] for more information about using
these protection parameters to secure an association between a client and target.

DCE RPC Authorization Services

This section describes the DCE authorization service indicated by the
authorization_service member of theDCESecurityMechanismInfo structure in
the component_data field of the TAG_DCE_SEC_MECH component.

DCEAuthorizationName indicates that the target performs authorization based on
the client security name. The DCE RPC authorization service
DCEAuthorizationName asserts the principal name (without cryptographic
protection if the association optionNoProtection is chosen, or with cryptographic
protection otherwise).

DCEAuthorizationDCE indicates that the target performs authorization using the
client’s Privilege Attribute Certificate (for OSF DCE1.0.3or previous versions), or the
client’s Extended Privilege Attribute Certificate (for DCE 1.1). The authorization
serviceDCEAuthorizationDCE asserts the principal name and appropriate
authorization data (without cryptographic protection if the association option
NoProtection is chosen, or with cryptographic protection otherwise).

DCEAuthorizationNone indicates that the target performs no authorization based
privilege information carried by the RPC runtime. This is valid only if the associatio
option NoProtection is chosen.

The authorization_service identifiers defined here for Secure DCE-CIOP correspon
DCE RPC authorization service identifiers and are defined to have identical values
The relationship between these identifiers is shown in the following table.

Table 3-15 Relation between DCE-CIOP and DCE RPC Authorization Service Identifiers

Secure DCE-CIOP
authorization_service

DCE RPC
Authorization Service

Shared Value

DCEAuthorizationNone rpc_c_authz_none 0
3-110 Security Service V1.5 May 2000



3

ibed

y of

is
arget

its

e
d

re
DCE RPC Protection Levels

The meanings of the DCE RPC protection levels referenced in Table 8-4 are descr
below. For the purposes of evaluating the protection levels, it is interesting to
remember that a single DCE-CIOP message is transferred over the wire in the bod
one or more DCE RPC PDUs.

rpc_c_protect_level_none indicates that no authentication or message protection
to be performed, regardless of the authentication service chosen. Depending on t
policy, the client may be granted access as an unauthenticated principal.

rpc_c_protect_level_connect indicates that the client and server identities are
exchanged and cryptographically verified at the time the binding is set up between
them. Strong mutual authentication and replay detectionfor the binding set-up onlyis
provided. There are no protection services per DCE RPC PDU.

rpc_c_protect_level_pkt indicates that therpc_c_protect_level_connect
services are provided plus detection of misordering or replay of DCE RPC PDUs.
There is no protection against PDU modification.

rpc_c_protect_level_pkt_integrity offers therpc_c_protect_level_pkt services
plus detection of DCE RPC PDU modification.

rpc_c_protect_level_pkt_privacy offers therpc_c_protect_level_pkt_integrity
services plus privacy of RPC arguments, which means the DCE-CIOP message in
entirety is privacy protected.

rpc_c_protect_level_default indicates the default protection level, as defined by th
DCE implementation or by a site administrator (should be one of the above define
values).

DCE RPC Authentication Services

The meanings of the DCE RPC authentication services referenced in Table 3-15 a
described below.

rpc_c_authn_none indicates no authentication. If this is selected, then no
authorization, DCEAuthorizationNone, must be chosen as well.

rpc_c_authn_dce_secret indicates the DCE shared-secret key authentication
service.

DCEAuthorizationName rpc_c_authz_name 1

DCEAuthorizationDCE rpc_c_authz_dce 2

Table 3-15 Relation between DCE-CIOP and DCE RPC Authorization Service Identifiers

Secure DCE-CIOP
authorization_service

DCE RPC
Authorization Service

Shared Value
Security Service V1.5 DCE-CIOP with Security May 2000 3-111



3

for

e

e

ese

el

”

tant
l

e

of
3.8.3.1 Secure DCE-CIOP Operational Semantics

This section describes how the DCE-CIOP transport layer should provide security
invocation and locate requests.

During a request invocation, if theIOR components indicate support for the DCE-
CIOP transport and theTAG_DCE_SEC_MECH component is present, then a Secur
DCE-CIOP request can be made.

Deriving DCE Security Parameters from Association Options

The client-side secure invocation policy and the target-side policy expressed in th
TAG_ASSOCIATION_OPTIONS component are used to derive the actual options
using the method described in “Determining Association Options” on page 3-12. Th
options are then reduced to a singlerequired_option using the algorithm described
in “The DCE Association Options Reduction Algorithm” on page 3-112 below. The
resultantrequired_option is used to select a DCE RPC protection level and
authentication service using Table 3-14 on page 3-108. The derived protection lev
and authentication service are used to secure the association via the
rpc_binding_set_auth_info() call (see “Securing the Binding Handle to the Target
on page 3-113).

The DCE Association Options Reduction Algorithm

The “DCE Association Options Reduction” algorithm is used to select a single
association option,required_option , given the value required by client and target
derived as described in “Determining Association Options” on page 3-12. The resul
required_option indicates, via Table 3-14 on page 3-108, the DCE protection leve
and authentication service to use for invocations.

The association option names used in the following algorithm refer to options in th
negotiated-required options set.

The “DCE Association Options Reduction” algorithm is expressed as:

If Confidentiality is set, then required_option = Confidentiality;
else if Integrity is set, then required_option = Integrity;
else if DetectReplay is set, OR
     if DetectMisordering is set,
     then required_option = DetectReplay;
     (alternatively, the same results are obtained with:
     then required_option = DetectMisordering;)
else if EstablishTrustInClient is set,
     then required_option = EstablishTrustInClient;
else required_option = NoProtection.

Behavior When TAG_ASSOCIATION_OPTIONS Not Present

As described earlier, if theTAG_ASSOCIATION_OPTIONS component is not
present, then the target is assumed to support and require
rpc_c_protect_level_default andrpc_c_authn_dce_secret . Since these
protection parameters are not expressed as association options, the usual method
3-112 Security Service V1.5 May 2000



3

ns

d

if

the
s

deriving a singlerequired_option by combining client and target policy (see
“Determining Association Options” on page 3-12 and “The DCE Association Optio
Reduction Algorithm” on page 3-112“above) cannot be used. Instead, use the
following alternative method to derive the required DCE RPC protection level and
authentication service:

• Translate the client-side secure invocation policy from a set of client supported
association options to a singleclient_supported_option and from a set of client
required association options to a singleclient_required_option , using in each
case the algorithm described in “The DCE Association Options Reduction
Algorithm” on page 3-112.

• Using Table 3-14 on page 3-108 translate theclient_supported_option and
client_required_option to corresponding “supported” and “required” DCE RPC
protection level/authentication service pairs.

• If the target principal is a member of the local cell, determine the target require
protection level implied byrpc_c_protect_level_default by calling
rpc_mgmt_inq_dflt_protect_level() passingrpc_c_authn_dce_secret as the
authn_svc parameter. If the target principal is not a member of the local cell or
it’s difficult to determine, then assume a target required protection level of
rpc_c_protect_level_pkt_integrity .

• If the client supportsrpc_c_authn_dce_secret , then choose the strongest
protection level that both the client and target support and that does not exceed
strongest protection level required by either the client or target. If the client doe
not supportrpc_c_authn_dce_secret , then chooserpc_c_authn_none and
rpc_c_protect_level_none . Use the protection level and authentication service
thus derived to secure the association between this client and target.

Securing the Binding Handle to the Target

The DCE-CIOP protocol engine acquires anrpc_binding_handle to the target using
its normal procedure. TheDCE_CIOP sets authentication and authorization
information on that binding handle with therpc_binding_set_auth_info() call using
data from theIOR profile security components in the following way:

• The target security name string from theTAG_SEC_NAME component (or NUL, if
the component is not present) is passed torpc_binding_set_auth_info() via the
server_princ_name parameter.

• If the TAG_ASSOCIATION_OPTIONS component is present in theIOR, see
“Deriving DCE Security Parameters from Association Options” on page 3-112
above to select a DCE RPC protection level and authentication service for this
invocation.

If the TAG_ASSOCIATION_OPTIONS component is not present in the IOR, see
“Behavior When TAG_ASSOCIATION_OPTIONS Not Present” on page 3-112
above to select a DCE RPC protection level and authentication service for this
invocation.
Security Service V1.5 DCE-CIOP with Security May 2000 3-113



3

xt.
The selected protection level is passed torpc_binding_set_auth_info() via the
protect_level parameter. The selected authentication service is passed via the
authn_svcparameter torpc_binding_set_auth_info() .

• The auth_identity parameter is set to NULL to use the DCE default login conte

• The authorization service identifier from theauthorization_service field of the
DCESecurityMechanismInfo component_data is mapped to the
corresponding DCE RPC authorization service identifier (using Table 3-15 on
page 3-110) which is then passed via theauthz_svc parameter.

After a successful call torpc_binding_set_auth_info() , the authenticated binding
handle will be used by the DCE-CIOP protocol engine to make secure requests.
3-114 Security Service V1.5 May 2000



References A
ent.

95.

uced

rry
A.1 List of References

Note that these references are to definitions which are sometimes a set of docum

[1] CORBA/IIOP 2.2.

[2] Common Secure IIOP Request for Proposals (orb/96-01-03)

[3] CORBA Time Service, Chapter 16 of CORBAservices specification, also
available at the URL http://www.omg.org/docs/formal/97-02-22.pdf

[4] IETF RFC 1779 A String Representation of Distinguished Names. March 19

[5] X/Open Application Environment Specification for Distributed Computing.

[6] X/Open Preliminary SpecificationX/Open DCE: Authentication and Security
Services.

[7] X/OPEN CAE Specification C309

[8] OSF AES/Distributed Computing RPC Volume.

[9] OSF DCE 1.1 Application Development Reference

[10] The ECMA GSS-API mechanism specified in ECMA-235. See also related
standard ECMA-219 (Authentication and Privilege Attribute Security
Application with related key distribution functions)

[11] GSS-APIThe Generic Security Services API as defined in IETF RFC 1508
(September 1993) and X/Open P308.An update to RFC 1508 has been prod
by the IETF cat group.

[12] The IETF GSS Kerberos V5 definition which specifies details of the use of
Kerberos V5 with GSS-API. It includes updates to RFC 1510 e.g. how to ca
delegation information. It is specified in RFC 1964.
Security Service V1.5 May 2000 A-1



A

3).

c

3,

tf-

l-

in
[13] The Kerberos V5 mechanism as defined in IETF RFC 1510 (September 199

[14] The ORB Portability Specification - CORBA V2.3 Chapter 9..

[15] Open Distributed Processing - Reference Model Parts 1 through 3, OMG do
#om/96-10-02, 03, 04.

[16] The SESAME gss-api mechanism. This is a subset of the ECMA GSS
Mechanism and is specified in draft-ietf-cat-sesamemech-00.txt.

[17] The SESAME V4 Overview. This can be found via the web at
www.esat.kuleuven.ac.be/cosic/sesame.html

[18] John G. Fletcher, “Serial Link Protocol Design: A Critique of the X.25
Standard, Level 2,” Proceedings of SIGCOMM '84, ACM SIGCOMM, pp.26-3
June 6-8, 1984.

[19] Simple negotiation GSS-API mechanism as defined in draft-ietf-cat-snego-
02.txt.

[20] The Simple Public-Key GSS-API Mechanism (SPKM). Internet Draft draft-ie
cat-spkmgss-06.txt Jan. 1996.

[21] Secure Socket Layer [ftp://ierf.cnsi.reston.va.us/internet-drafts/draft-freier-ss
version3-01.txt]

[22] ISO/IEC 9594-8, “Information Technology - Open Systems Interconnection -
The Directory: Authentication Framework”, CCITT/ITU Recommendation
X.509, 1993.

[23] The extended gss-api supporting access control and delegation extensions
defined in draft-ietf-cat-xgssapi-acc-cntrl-00.txt. This interface is also defined
the ECMA GSS-API Mechanism standard - ECMA-235
A-2 Security Service V1.5 May 2000



ConsolidatedOMGIDL B
2.

n

rity
B.1 Introduction

The OMG IDL for CORBA security is split into modules as follows:

• A module containing the common data types used by all security modules.

• A module for application interfaces for each Security Functionality Levels 1 and

• A module for Security Level 2 security policy administration.

• A module for non-repudiation, including the non-repudiation policy administratio
interface.

• A module for the Replaceable Security Service, as described in Section 2.5,
“Implementor’s Security Interfaces,” on page 2-143.

• A module for elements of the SECure Inter Orb Protocol (SECIOP)l.

• A module for elements of the SSL Protocol.

• A module for elements related to Security that are added to the DCE_CIOP Secu
module.

B.2 General Security Data Module

This subsection defines the OMG IDL for security data types common to the other
security modules, which is the moduleSecurity . The Security module depends on
the TimeBase module and theCORBA module.

#if !defined(_SECURITY_IDL_)
#define _SECURITY_IDL_
#include <orb.idl>
#include <TimeBase.idl>
#pragma prefix "omg.org"

module Security {
Security Service V1.5 May 2000 B-1



B

# pragma version Security 1.5

typedef string SecurityName;
typedef sequence <octet> Opaque;

// Constant declarations for Security Service Options

const CORBA::ServiceOption SecurityLevel1 = 1;
const CORBA::ServiceOption SecurityLevel2 = 2;
const CORBA::ServiceOption NonRepudiation = 3;
const CORBA::ServiceOption SecurityORBServiceReady = 4;
const CORBA::ServiceOption SecurityServiceReady = 5;
const CORBA::ServiceOption ReplaceORBServices = 6;
const CORBA::ServiceOption ReplaceSecurityServices = 7;
const CORBA::ServiceOption StandardSecureInteroperability = 8;
const CORBA::ServiceOption DCESecureInteroperability = 9;

// Service options for Common Secure Interoperability

const CORBA::ServiceOption CommonInteroperabilityLevel0 = 10;
const CORBA::ServiceOption CommonInteroperabilityLevel1 = 11;
const CORBA::ServiceOption CommonInteroperabilityLevel2 = 12;

// Security mech types supported for secure association
const CORBA::ServiceDetailType SecurityMechanismType = 1;

// privilege types supported in standard access policy
const CORBA::ServiceDetailType SecurityAttribute = 2;

// extensible families for standard data types

struct ExtensibleFamily {
unsigned short family_definer;
unsigned short family;

};

// security attributes

typedef unsigned long SecurityAttributeType;

// other attributes; family = 0

const SecurityAttributeType AuditId = 1;
const SecurityAttributeType AccountingId = 2;
const SecurityAttributeType NonRepudiationId = 3;

// privilege attributes; family = 1

const SecurityAttributeType _Public = 1;
const SecurityAttributeType AccessId = 2;
const SecurityAttributeType PrimaryGroupId = 3;
const SecurityAttributeType GroupId = 4;
const SecurityAttributeType Role = 5;
const SecurityAttributeType AttributeSet = 6;
const SecurityAttributeType Clearance = 7;
B-2 Security Service V1.5 May 2000



B

const SecurityAttributeType Capability = 8;

struct AttributeType {
ExtensibleFamily attribute_family;
SecurityAttributeType attribute_type;

};

typedef sequence<AttributeType> AttributeTypeList;

struct SecAttribute {
AttributeType attribute_type;
Opaque defining_authority;
Opaque value;
// the value of this attribute can be
// interpreted only with knowledge of type

};

typedef sequence <SecAttribute> AttributeList;

// Authentication return status

enum AuthenticationStatus {
SecAuthSuccess,
SecAuthFailure,
SecAuthContinue,
SecAuthExpired

};

// Association return status

enum AssociationStatus {
SecAssocSuccess,
SecAssocFailure,
SecAssocContinue

};

// Authentication method
typedef unsigned long AuthenticationMethod;

typedef sequence<AuthenticationMethod> AuthenticationMethodList;

// Credential types which can be set as Current default

enum CredentialType {
SecInvocationCredentials,
SecNRCredentials

};

enum InvocationCredentialsType {
SecOwnCredentials,
SecReceivedCredentials

};

// Declarations related to Rights
Security Service V1.5 May 2000 B-3



B

struct Right {
ExtensibleFamily rights_family;
string right;

};

typedef sequence <Right> RightsList;

enum RightsCombinator {
SecAllRights,
SecAnyRight

};

// Delegation related

enum DelegationState {
SecInitiator,
SecDelegate

};

enum DelegationDirective {
Delegate,
NoDelegate

};

// pick up from TimeBase

typedef TimeBase::UtcT UtcT;
typedef TimeBase::IntervalT IntervalT;
typedef TimeBase::TimeT TimeT;

// Security features available on credentials.

enum SecurityFeature {
SecNoDelegation,
SecSimpleDelegation,
SecCompositeDelegation,
SecNoProtection,
SecIntegrity,
SecConfidentiality,
SecIntegrityAndConfidentiality,
SecDetectReplay,
SecDetectMisordering,
SecEstablishTrustInTarget,
SecEstablishTrustInClient

};

// Quality of protection which can be specified
// for an object reference and used to protect messages

enum QOP {
SecQOPNoProtection,
SecQOPIntegrity,
SecQOPConfidentiality,
SecQOPIntegrityAndConfidentiality

};
B-4 Security Service V1.5 May 2000



B

// Type of SecurityContext

enum SecurityContextType {
SecClientSecurityContext,
SecServerSecurityContext

};

// Operational State of a Security Context

enum SecurityContextState {
SecContextInitialized,
SecContextContinued,
SecContextClientEstablished,
SecContextEstablished,
SecContextEstablishExpired,
SecContextExpired,
SecContextInvalid

};

// For use with SecurityReplaceable

struct OpaqueBuffer {
Opaque buffer;
unsigned long startpos;
unsigned long endpos;
// startpos <= endpos
// OpaqueBuffer is said to be empty if startpos == endpos

};

// Association options which can be administered
// on secure invocation policy and used to
// initialize security context

typedef unsigned short AssociationOptions;

const AssociationOptions NoProtection = 1;
const AssociationOptions Integrity = 2;
const AssociationOptions Confidentiality = 4;
const AssociationOptions DetectReplay = 8;
const AssociationOptions DetectMisordering = 16;
const AssociationOptions EstablishTrustInTarget = 32;
const AssociationOptions EstablishTrustInClient = 64;
const AssociationOptions NoDelegation = 128;
const AssociationOptions SimpleDelegation = 256;
const AssociationOptions CompositeDelegation = 512;

// Flag to indicate whether association options being
// administered are the “required” or “supported” set

enum RequiresSupports {
SecRequires,
SecSupports

};

// Direction of communication for which
Security Service V1.5 May 2000 B-5



B

// secure invocation policy applies

enum CommunicationDirection {
SecDirectionBoth,
SecDirectionRequest,
SecDirectionReply

};

// security association mechanism type

typedef string MechanismType;

typedef sequence<MechanismType> MechanismTypeList;

struct SecurityMechanismData {
MechanismType mechanism;
Opaque security_name;
AssociationOptions options_supported;
AssociationOptions options_required;

};

typedef sequence<SecurityMechanismData>SecurityMechanismDataList;

// AssociationOptions-Direction pair

struct OptionsDirectionPair {
AssociationOptions options;
CommunicationDirectiondirection;

};

typedef sequence <OptionsDirectionPair> OptionsDirectionPairList;

// Delegation mode which can be administered

enum DelegationMode {
SecDelModeNoDelegation, // i.e. use own credentials
SecDelModeSimpleDelegation, // delegate received credentials
SecDelModeCompositeDelegation // delegate both;

};

// Association options supported by a given mech type

struct MechandOptions {
MechanismType mechanism_type;
AssociationOptions options_supported;

};

typedef sequence <MechandOptions> MechandOptionsList;

// Attribute of the SecurityLevel2::EstablishTrustPolicy

struct EstablishTrust {
boolean trust_in_client;
boolean trust_in_target;

};
B-6 Security Service V1.5 May 2000



B

// Audit

typedef unsigned long AuditChannelId;

typedef unsigned short EventType;

const EventType AuditAll = 0;
const EventType AuditPrincipalAuth = 1;
const EventType AuditSessionAuth = 2;
const EventType AuditAuthorization = 3;
const EventType AuditInvocation = 4;
const EventType AuditSecEnvChange = 5;
const EventType AuditPolicyChange = 6;
const EventType AuditObjectCreation = 7;
const EventType AuditObjectDestruction = 8;
const EventType AuditNonRepudiation = 9;

enum DayOfTheWeek {
Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday};

enum AuditCombinator {
SecAllSelectors,
SecAnySelector

};

struct AuditEventType {
ExtensibleFamily event_family;
EventType event_type;

};
typedef sequence <AuditEventType> AuditEventTypeList;

typedef unsigned long SelectorType;

const SelectorType InterfaceName = 1;
const SelectorType ObjectRef = 2;
const SelectorType Operation = 3;
const SelectorType Initiator = 4;
const SelectorType SuccessFailure = 5;
const SelectorType Time = 6;
const SelectorType DayOfWeek = 7;

// values defined for audit_needed and audit_write are:
// InterfaceName: CORBA::RepositoryId
// ObjectRef: object reference
// Operation: op_name
// Initiator: Credentials
// SuccessFailure: boolean
// Time: utc time on audit_write; time picked up from
// environment in audit_needed if required
// DayOfWeek: DayOfTheWeek

struct SelectorValue {
SelectorType selector;
any value;

};
Security Service V1.5 May 2000 B-7



B

y

typedef sequence <SelectorValue> SelectorValueList;

// Constant declaration for valid Security Policy Types

// General administrative policies
const CORBA::PolicyType SecClientInvocationAccess = 1;
const CORBA::PolicyType SecTargetInvocationAccess = 2;
const CORBA::PolicyType SecApplicationAccess = 3;
const CORBA::PolicyType SecClientInvocationAudit = 4;
const CORBA::PolicyType SecTargetInvocationAudit = 5;
const CORBA::PolicyType SecApplicationAudit = 6;
const CORBA::PolicyType SecDelegation = 7;
const CORBA::PolicyType SecClientSecureInvocation = 8;
const CORBA::PolicyType SecTargetSecureInvocation = 9;
const CORBA::PolicyType SecNonRepudiation = 10;

// Policies used to control attributes of a binding to a target
const CORBA::PolicyType SecMechanismsPolicy = 12;
const CORBA::PolicyType SecInvocationCredentialsPolicy = 13;
const CORBA::PolicyType SecFeaturePolicy = 14; // obsolete
const CORBA::PolicyType SecQOPPolicy = 15;

const CORBA::PolicyType SecDelegationDirectivePolicy = 38;
const CORBA::PolicyType SecEstablishTrustPolicy = 39;

};

#endif /* _SECURITY_IDL_ */

B.3 Application Interfaces - Level 1

This subsection defines those interfaces available to application objects using onl
Security Functionality Level 1, and consists of a single module,SecurityLevel1 . This
module depends on theCORBA module, and on theSecurity module.

#if !defined(_SECURITY_LEVEL_1_IDL_)
#define _SECURITY_LEVEL_1_IDL_
#include <Security.idl>
#pragma prefix "omg.org"

module SecurityLevel1 {

# pragma version SecurityLevel1 1.5
interface Current : CORBA::Current {// Locality Constrained

// thread specific operations

Security::AttributeList get_attributes (
in Security::AttributeTypeList attributes

);
};

};
#endif /* _SECURITY_LEVEL_1_IDL_ */
B-8 Security Service V1.5 May 2000



B

B.4 Application Interfaces - Level 2

This subsection defines the interfaces available to applications using Security
Functionality Level 2, all of which are declared in theSecurityLevel2 module. This
module depends on theCORBA, SecurityLevel1 andSecurity modules. The
interfaces are described in Section 2.3, “Application Developer’s Interfaces,” on
page 2-71.

#if !defined(_SECURITY_LEVEL_2_IDL_)
#define _SECURITY_LEVEL_2_IDL_
#include <SecurityLevel1.idl>
#pragma prefix "omg.org"

module SecurityLevel2 {

# pragma version SecurityLevel2 1.5

// Forward declaration of interfaces
interface PrincipalAuthenticator;
interface Credentials;
interface Current;

// Interface PrincipalAuthenticator
interface PrincipalAuthenticator { // Locality Constrained

# pragma version PrincipalAuthenticator 1.5

Security::AuthenticationMethodList
get_supported_authen_methods(

in Security::MechanismType mechanism
);

Security::AuthenticationStatus authenticate (
in Security::AuthenticationMethod method,
in Security::MechanismType mechanism,
in Security::SecurityName security_name,
in Security::Opaque auth_data,
in Security::AttributeList privileges,
out Credentials creds,
out Security::Opaque continuation_data,
out Security::Opaque auth_specific_data

);

Security::AuthenticationStatus continue_authentication (
in Security::Opaque response_data,
in Credentials creds,
out Security::Opaque continuation_data,
out Security::Opaque auth_specific_data

);
};

// Interface Credentials
interface Credentials { // Locality Constrained

# pragma version Credentials 1.5
Security Service V1.5 May 2000 B-9



B

Credentials copy ();

void destroy();

readonly attribute Security::InvocationCredentialsTypecredentials_type;

readonly attribute Security::AuthenticationStatus authentication_state;

readonly attribute Security::MechanismType mechanism;

attribute Security::AssociationOptions accepting_options_supported;

attribute Security::AssociationOptions accepting_options_required;

attribute Security::AssociationOptions invocation_options_supported;

attribute Security::AssociationOptions invocation_options_required;

boolean get_security_feature(
in Security::CommunicationDirection direction,
in Security::SecurityFeature feature

);

boolean set_privileges (
in boolean force_commit,
in Security::AttributeList requested_privileges,
out Security::AttributeList actual_privileges

);

Security::AttributeList get_attributes (
in Security::AttributeTypeList attributes

);

boolean is_valid (
out Security::UtcT expiry_time

);

boolean refresh(
in Security::Opaque refresh_data

);
};

typedef sequence <Credentials> CredentialsList;

interface ReceivedCredentials : Credentials { // Locality Constrained

# pragma version ReceivedCredentials 1.5

readonly attribute Credentials accepting_credentials;

readonly attribute Security::AssociationOptionsassociation_options_used;

readonly attribute Security::DelegationState delegation_state;

readonly attribute Security::DelegationMode delegation_mode;
B-10 Security Service V1.5 May 2000



B

};

// RequiredRights Interface

interface RequiredRights{
void get_required_rights(

in Object obj,
in CORBA::Identifier operation_name,
in CORBA::RepositoryId interface_name,
out Security::RightsList rights,
out Security::RightsCombinator rights_combinator

);

void set_required_rights(
in CORBA::Identifier operation_name,
in CORBA::RepositoryId interface_name,
in Security::RightsList rights,
in Security::RightsCombinator rights_combinator

);
};

// interface audit channel
interface AuditChannel { // Locality Constrained

void audit_write (
in Security::AuditEventType event_type,
in CredentialsList creds,
in Security::UtcT time,
in Security::SelectorValueList descriptors,
in Security::Opaque event_specific_data

);

readonly attribute Security::AuditChannelId audit_channel_id;
};

// interface for Audit Decision

interface AuditDecision { // Locality Constrained

boolean audit_needed (
in Security::AuditEventType event_type,
in Security::SelectorValueList value_list

);

readonly attribute AuditChannel audit_channel;
};

interface AccessDecision { // Locality Constrained

boolean access_allowed (

in SecurityLevel2::CredentialsList cred_list,
in Object target,
in CORBA::Identifier operation_name,
in CORBA::Identifier target_interface_name
Security Service V1.5 May 2000 B-11



B

);
};

// Policy interfaces to control bindings

interface QOPPolicy : CORBA::Policy { // Locality Constrained
readonly attribute Security::QOP qop;

};

interface MechanismPolicy : CORBA::Policy { // Locality Constrained
readonly attribute Security::MechanismTypeList mechanisms;

};

interface InvocationCredentialsPolicy : CORBA::Policy {
// Locality Constrained

readonly attribute CredentialsList creds;
};

interface EstablishTrustPolicy : CORBA::Policy { // Locality Constrained
readonly attribute Security::EstablishTrust trust;

};

interface DelegationDirectivePolicy : CORBA::Policy {
// Locality Constrained

readonly attribute Security::DelegationDirective
delegation_directive;

};

// Interface Current derived from SecurityLevel1::Current  providing
// additional operations on Current at this security level.
// This is implemented by the ORB

interface Current : SecurityLevel1::Current { // Locality Constrained

# pragma version Current 1.5

// Thread specific

readonly attribute ReceivedCredentials received_credentials;

void set_credentials (
in Security::CredentialType cred_type,
in CredentialsList creds,
in Security::DelegationDirective del

);

CredentialsList get_credentials (
in Security::CredentialType cred_type

);

CORBA::Policy get_policy (
in CORBA::PolicyType policy_type

);

void remove_own_credentials(
B-12 Security Service V1.5 May 2000



B

ted
RB
in Credentials creds
);

// Process/Capsule/ORB Instance specific operations

readonly attribute Security::MechandOptionsListsupported_mechanisms;

readonly attribute CredentialsList own_credentials;

readonly attribute RequiredRights required_rights_object;
readonly attribute PrincipalAuthenticator

principal_authenticator;
readonly attribute AccessDecision access_decision;
readonly attribute AuditDecision audit_decision;

// Security mechanism data for a given target
Security::SecurityMechanismDataList get_security_mechanisms (

in Object obj_ref
);

};
};

#endif /* _SECURITY_LEVEL_2_IDL_ */

B.5 Security Administration Interfaces

This section covers interfaces concerned with querying and modifying security
policies, and comprises the moduleSecurityAdmin . TheSecurityAdmin module
depends onCORBA , Security , andSecurityLevel2 modules. The interfaces are
described in Section 2.4, “Administrator’s Interfaces,” on page 2-116. There are rela
interfaces for finding domain managers and policies. They are to be found in the O
Interface chapter of theCommon Object Request Broker: Architecture and
Specification.

#if !defined(_SECURITY_ADMIN_IDL_)
#define _SECURITY_ADMIN_IDL_
#include <SecurityLevel2.idl>
#pragma prefix "omg.org"

module SecurityAdmin {

# pragma version SecurityAdmin 1.5

// interface AccessPolicy
interface AccessPolicy : CORBA::Policy {

# pragma version AccessPolicy 1.5

Security::RightsList get_effective_rights (
in Security::AttributeList attrib_list,
in Security::ExtensibleFamily rights_family

);

Security::RightsList get_all_effective_rights(
Security Service V1.5 May 2000 B-13



B

 in Security::AttributeList attrib_list
);

};

// interface DomainAccessPolicy
interface DomainAccessPolicy : AccessPolicy {

# pragma version DomainAccessPolicy 1.5

void grant_rights(
in Security::SecAttribute priv_attr,
in Security::DelegationState del_state,
in Security::RightsList rights

);

void revoke_rights(
in Security::SecAttribute priv_attr,
in Security::DelegationState del_state,
in Security::RightsList rights

);

void replace_rights (
in Security::SecAttribute priv_attr,
in Security::DelegationState del_state,
in Security::RightsList rights

);

Security::RightsList get_rights (
in Security::SecAttribute priv_attr,
in Security::DelegationState del_state,
in Security::ExtensibleFamily rights_family

);

Security::RightsList get_all_rights(
 in Security::SecAttribute priv_attr,
 in Security::DelegationState del_state

);

};

// interface AuditPolicy
interface AuditPolicy : CORBA::Policy {

# pragma version AuditPolicy 1.5

void set_audit_selectors (
in CORBA::RepositoryId object_type,
in Security::AuditEventTypeList events,
in Security::SelectorValueList selectors,
in Security::AuditCombinator audit_combinator

);

void clear_audit_selectors (
in CORBA::RepositoryId object_type,
in Security::AuditEventTypeList events

);
B-14 Security Service V1.5 May 2000



B

void replace_audit_selectors (
in CORBA::RepositoryIdf object_type,
in Security::AuditEventTypeList events,
in Security::SelectorValueList selectors,
in Security::AuditCombinator audit_combinator

);

void get_audit_selectors (
in CORBA::RepositoryId object_type,
in Security::AuditEventType event_type
out Security::SelectorValueList selectors,
out Security::AuditCombinator audit_combinator

);

void set_audit_channel (
in Security::AuditChannelId audit_channel_id

);
};

// interface SecureInvocationPolicy
interface SecureInvocationPolicy : CORBA::Policy {

# pragma version SecureInvocationPolicy 1.5

void set_association_options(
in CORBA::RepositoryId object_type,
in Security::RequiresSupports requires_supports,
in Security::CommunicationDirection direction,
in Security::AssociationOptions options

);

Security::AssociationOptions get_association_options(
in CORBA::RepositoryId object_type,
in Security::RequiresSupports requires_supports,
in Security::CommunicationDirection direction

);
};

// interface DelegationPolicy
interface DelegationPolicy : CORBA::Policy {

# pragma version DelegationPolicy 1.5

void set_delegation_mode(
in CORBA::RepositoryId object_type,
in Security::DelegationMode mode

);

Security::DelegationMode get_delegation_mode(
in CORBA::RepositoryId object_type

);
};

};

#endif /* _SECURITY_ADMIN_IDL_ */
Security Service V1.5 May 2000 B-15



B

B.6 Interfaces for Non-repudiation

This subsection defines the optional application interface for non-repudiation. This
module depends onSecurityLevel2 andCORBA modules. The interfaces are
described in Section 2.1.7, “Non-repudiation,” on page 2-18.

#if !defined(_NR_SERVICE_IDL_)
#define _NR_SERVICE_IDL_
#include <SecurityLevel2.idl>
#pragma prefix "omg.org"

module NRService  {

# pragma version NRService 1.5

typedef Security::MechanismType NRMech;
typedef Security::ExtensibleFamily NRPolicyId;

enum EvidenceType {
SecProofofCreation,
SecProofofReceipt,
SecProofofApproval,
SecProofofRetrieval,
SecProofofOrigin,
SecProofofDelivery,
SecNoEvidence     // used when request-only token desired

};

enum NRVerificationResult {
SecNRInvalid,
SecNRValid,
SecNRConditionallyValid

};

// the following are used for evidence validity duration
typedef unsigned long DurationInMinutes;

const DurationInMinutes DurationHour   = 60;
const DurationInMinutes DurationDay    = 1440;
const DurationInMinutes DurationWeek   = 10080;
const DurationInMinutes DurationMonth = 43200;// 30 days;
const DurationInMinutes DurationYear   = 525600;//365 days;

typedef long TimeOffsetInMinutes;

struct NRPolicyFeatures {
NRPolicyId policy_id;
unsigned long policy_version;
NRMech mechanism;

};

typedef sequence <NRPolicyFeatures> NRPolicyFeaturesList;

// features used when generating requests
struct RequestFeatures {
B-16 Security Service V1.5 May 2000



B

NRPolicyFeatures requested_policy;
EvidenceType requested_evidence;
string requested_evidence_generators;
string requested_evidence_recipients;
boolean include_this_token_in_evidence;

};

struct EvidenceDescriptor {
EvidenceType evidence_type;
DurationInMinutes evidence_validity_duration;
boolean must_use_trusted_time;

};

typedef sequence <EvidenceDescriptor> EvidenceDescriptorList;

struct AuthorityDescriptor {
string authority_name;
string authority_role;
TimeOffsetInMinutes last_revocation_check_offset;

// may be >0 or <0; add this to evid. gen. time to
// get latest time at which mech. will check to see
// if this authority’s key has been revoked.

};

typedef sequence <AuthorityDescriptor> AuthorityDescriptorList;

struct MechanismDescriptor {
NRMech mech_type;
AuthorityDescriptorList authority_list;
TimeOffsetInMinutes max_time_skew;

// max permissible difference between evid. gen. time
// and time of time service countersignature
// ignored if trusted time not reqd.

};

typedef sequence <MechanismDescriptor> MechanismDescriptorList;

interface NRCredentials : SecurityLevel2::Credentials{

boolean set_NR_features (
in NRPolicyFeaturesList requested_features,
out NRPolicyFeaturesList actual_features

);

NRPolicyFeaturesList get_NR_features ();

void generate_token (
in Security::Opaque input_buffer,
in EvidenceType generate_evidence_type,
in boolean include_data_in_token,
in boolean generate_request,
in RequestFeatures request_features,
in boolean input_buffer_complete,
out Security::Opaque nr_token,
out Security::Opaque evidence_check

);
Security Service V1.5 May 2000 B-17



B

NRVerificationResult verify_evidence (
in Security::Opaque input_token_buffer,
in Security::Opaque evidence_check,
in boolean form_complete_evidence,
in boolean token_buffer_complete,
out Security::Opaque output_token,
out Security::Opaque data_included_in_token,
out boolean evidence_is_complete,
out boolean trusted_time_used,
out Security::TimeT complete_evidence_before,
out Security::TimeT complete_evidence_after

);

void get_token_details (
in Security::Opaque token_buffer,
in boolean token_buffer_complete,
out string token_generator_name,
out NRPolicyFeatures policy_features,
out EvidenceType evidence_type,
out Security::UtcT evidence_generation_time,
out Security::UtcT evidence_valid_start_time,
out DurationInMinutes evidence_validity_duration,
out boolean data_included_in_token,
out boolean request_included_in_token,
out RequestFeatures request_features

);

boolean form_complete_evidence (
in Security::Opaque input_token,
out Security::Opaque output_token,
out boolean trusted_time_used,
out Security::TimeT complete_evidence_before,
out Security::TimeT complete_evidence_after

);
};

interface NRPolicy : CORBA::Policy{

void get_NR_policy_info   (
out Security::ExtensibleFamily

NR_policy_id,
out unsigned long policy_version,
out Security::TimeT policy_effective_time,
out Security::TimeT policy_expiry_time,
out EvidenceDescriptorList supported_evidence_types,
out MechanismDescriptorList supported_mechanisms

);

boolean set_NR_policy_info (
in MechanismDescriptorList requested_mechanisms,
out MechanismDescriptorList actual_mechanisms

);
};

};
#endif /* _NR_SERVICE_IDL_ */
B-18 Security Service V1.5 May 2000



B

y

n

B.7 Security Replaceable Service Interfaces

This section defines the IDL interfaces to the Security objects, which should be
replaced if there is a requirement to replace the Security services used for securit
associations (i.e., theVault andSecurity Context ). The IDL provided here is for
those interfaces that have not already been covered by theSecurityLevel2 module.
This section comprises the moduleSecurityReplaceable . This module depends on
theCORBA , Security , andSecurityLevel2 modules. The interfaces are described i
Section 2.5, “Implementor’s Security Interfaces,” on page 2-143.

#if !defined(_SECURITY_REPLACEABLE_IDL_)
#define _SECURITY_REPLACEABLE_IDL_
#include <SecurityLevel2.idl>
#pragma prefix "omg.org"

module SecurityReplaceable {

# pragma version SecurityReplacable 1.5

interface SecurityContext;
interface ClientSecurityContext;
interface ServerSecurityContext;

interface Vault { // Locality Constrained

# pragma version Vault 1.5

Security::AuthenticationMethodList
get_supported_authen_methods(

in Security::MechanismType mechanism;
);

Security::AuthenticationStatus acquire_credentials(
in Security::AuthenticationMethod method,
in Security::MechanismType mechanism,
in Security::SecurityName security_name,
in Security::Opaque auth_data,
in Security::AttributeList privileges,
out SecurityLevel2::Credentials creds,
out Security::Opaque continuation_data,
out Security::Opaque auth_specific_data

);

Security::AuthenticationStatus continue_credentials_acquisition(
in Security::Opaque response_data,
in SecurityLevel2::Credentials creds,
out Security::Opaque continuation_data,
out Security::Opaque auth_specific_data

);

Security::AssociationStatus init_security_context (
in SecurityLevel2::Credentials creds,
in Security::SecurityName target_security_name,
Security Service V1.5 May 2000 B-19



B

in Object target,
in Security::DelegationMode delegation_mode,
in Security::OptionsDirectionPairList association_options,
in Security::MechanismType mechanism,
in Security::Opaque mech_data, //from IOR
in Security::Opaque chan_binding,
out Security::OpaqueBuffer security_token,
out ClientSecurityContext security_context

);

Security::AssociationStatus accept_security_context (
in SecurityLevel2::CredentialsList creds_list,
in Security::Opaque chan_bindings,
in Security::OpaqueBuffer in_token,
out Security::OpaqueBuffer out_token,
out ServerSecurityContext security_context

);

Security::MechandOptionsList get_supported_mechs ();
};

interface SecurityContext { // Locality Constrained

# pragma version SecurityContext 1.5

readonly attribute Security::SecurityContextType context_type;
readonly attribute Security::SecurityContextState context_state;
readonly attribute Security::MechanismType mechanism;

readonly attribute boolean supports_refresh;

readonly attribute Security::Opaque chan_binding;

readonly attribute SecurityLevel2::ReceivedCredentials
received_credentials;

Security::AssociationStatus continue_security_context (
in Security::OpaqueBuffer in_token,
out Security::OpaqueBuffer out_token

);

void protect_message (
in Security::OpaqueBuffer message,
in Security::QOP qop,
out Security::OpaqueBuffer text_buffer,
out Security::OpaqueBuffer token

);

boolean reclaim_message (
in Security::OpaqueBuffer text_buffer,
in Security::OpaqueBuffer token,
out Security::QOP qop,
out Security::OpaqueBuffer message

);
B-20 Security Service V1.5 May 2000



B

boolean is_valid (
out Security::UtcT expiry_time

);

boolean refresh_security_context (
in Security::Opaque refresh_data,
out Security::OpaqueBuffer out_token

);

boolean process_refresh_token (
in Security::OpaqueBuffer refresh_token

);

boolean discard_security_context (
in Security::Opaque discard_data,
out Security::OpaqueBuffer out_token

);

boolean process_discard_token (
in Security::OpaqueBuffer discard_token,

);

};

interface ClientSecurityContext : SecurityContext { // Locality Constrained
readonly attribute Security::AssociationOptions association_options_used;
readonly attribute Security::DelegationMode delegation_mode;
readonly attribute Security::Opaque mech_data;
readonly attribute SecurityLevel2::Credentials client_credentials;
readonly attribute Security::AssociationOptionsserver_options_supported;
readonly attribute Security::AssociationOptionsserver_options_required;
readonly attribute Security::Opaque  server_security_name;

};

interface ServerSecurityContext : SecurityContext { // Locality Constrained
readonly attribute Security::AssociationOptions association_options_used;
readonly attribute Security::DelegationMode delegation_mode;
readonly attribute SecurityLevel2::Credentials server_credentials;
readonly attribute Security::AssociationOptions server_options_supported;
readonly attribute Security::AssociationOptionsserver_options_required;
readonly attribute Security::Opaque  server_security_name;

};

};

#endif /* _SECURITY_REPLACEABLE_IDL_ */

B.8 Secure Inter-ORB Protocol (SECIOP)

The SECIOP module holds structure declarations related to the layout of message
fields in the Secure Inter-ORB protocol. This module depends on theIOP and
Security modules.

#if !defined(_SECIOP_IDL_)
#define _SECIOP_IDL
Security Service V1.5 May 2000 B-21



B

#include <IOP.idl>
#include <Security.idl>
#pragma prefix "omg.org"

module SECIOP {

const IOP::ComponentId TAG_GENERIC_SEC_MECH = 22;

const IOP::ComponentId TAG_ASSOCIATION_OPTIONS = 13;

const IOP::ComponentId TAG_SEC_NAME = 14;

struct TargetAssociationOptions{
Security::AssociationOptions target_supports;
Security::AssociationOptions target_requires;

};

struct GenericMechanismInfo {
sequence <octet> security_mechanism_type;
sequence <octet> mech_specific_data;
sequence <IOP::TaggedComponent> components;

};

enum MsgType {
MTEstablishContext,
MTCompleteEstablishContext,
MTContinueEstablishContext,
MTDiscardContext,
MTMessageError,
MTMessageInContext

};

typedef unsigned long long ContextId;

enum ContextIdDefn {
CIDClient,
CIDPeer,
CIDSender

};

struct EstablishContext {
ContextId client_context_id;
sequence <octet> initial_context_token;

};

struct CompleteEstablishContext {
ContextId client_context_id;
boolean target_context_id_valid;
ContextId target_context_id;
sequence <octet> final_context_token;

};

struct ContinueEstablishContext {
ContextId client_context_id;
B-22 Security Service V1.5 May 2000



B

sequence <octet> continuation_context_token;
};

struct DiscardContext {
ContextIdDefn message_context_id_defn;
ContextId message_context_id;
sequence <octet> discard_context_token;

};

struct MessageError {
ContextIdDefn message_context_id_defn;
ContextId message_context_id;
long major_status;
long minor_status;

};

enum ContextTokenType {
SecTokenTypeWrap,
SecTokenTypeMIC

};

struct MessageInContext {
ContextIdDefn message_context_id_defn;
ContextId message_context_id;
ContextTokenType message_context_type;
sequence <octet> message_protection_token;

};

// message_protection_token is obtained by CDR encoding
// the following SequencingHeader followed by the octets of the
// frame data. SequencingHeader + Frame Data is called a
// SequencedDataFrame

struct SequencingHeader {
octet control_state;
unsigned long direct_sequence_number;
unsigned long reverse_sequence_number;
unsigned long reverse_window;

};

typedef sequence <octet> SecurityName;
typedef unsigned short CryptographicProfile;
typedef sequence <CryptographicProfile> CryptographicProfileList;

// Cryptographic profiles for SPKM

const CryptographicProfile MD5_RSA = 20;
const CryptographicProfile MD5_DES_CBC = 21;
const CryptographicProfile DES_CBC = 22;
const CryptographicProfile MD5_DES_CBC_SOURCE  = 23;
const CryptographicProfile DES_CBC_SOURCE  = 24;

// Security Mechanism SPKM_1

const IOP::ComponentId TAG_SPKM_1_SEC_MECH = 15;
Security Service V1.5 May 2000 B-23



B

struct SPKM_1 {
Security::AssociationOptions target_supports;
Security::AssociationOptions target_requires;
CryptographicProfileList crypto_profile;
SecurityName security_name;

};

// Security Mechanism SPKM_1

const IOP::ComponentId TAG_SPKM_2_SEC_MECH = 16;

struct SPKM_2 {
Security::AssociationOptions target_supports;
Security::AssociationOptions target_requires;
CryptographicProfileList crypto_profile;
SecurityName security_name;

};

// Cryptographic profiles for GSS Kerberos Protocol

const CryptographicProfile DES_CBC_DES_MAC = 10;
const CryptographicProfile DES_CBC_MD5 = 11;
const CryptographicProfile DES_MAC = 12;
const CryptographicProfile MD5 = 13;

// Security Mechanism KerberosV5

const IOP::ComponentId TAG_KerberosV5_SEC_MECH = 17;

struct KerberosV5 {
Security::AssociationOptions target_supports;
Security::AssociationOptions target_requires;
CryptographicProfileList crypto_profile;
SecurityName security_name;

};

// Cryptographic profiles for CSI-ECMA Protocol

const CryptographicProfile FullSecurity = 1;
const CryptographicProfile NoDataConfidentiality = 2;
const CryptographicProfile LowGradeConfidentiality = 3;
const CryptographicProfile AgreedDefault = 5;

// Security Mechanism CSI_ECMA_Secret

const IOP::ComponentId TAG_CSI_ECMA_Secret_SEC_MECH = 18;

struct CSI_ECMA_Secret {
Security::AssociationOptions target_supports;
Security::AssociationOptions target_requires;
CryptographicProfileList crypto_profile;
SecurityName security_name;

};

// Security Mechanism CSI_ECMA_Hybrid
B-24 Security Service V1.5 May 2000



B

as
const IOP::ComponentId TAG_CSI_ECMA_Hybrid_SEC_MECH = 19;

struct CSI_ECMA_Hybrid {
Security::AssociationOptions target_supports;
Security::AssociationOptions target_requires;
CryptographicProfileList crypto_profile;
SecurityName security_name;

};

// Security Mechanism CSI_ECMA_Public

const IOP::ComponentId TAG_CSI_ECMA_Public_SEC_MECH = 21;

struct CSI_ECMA_Public {
Security::AssociationOptions target_supports;
Security::AssociationOptions target_requires;
CryptographicProfileList crypto_profile;
SecurityName security_name;

};
};

#endif /* _SECIOP_IDL */

B.9 SSL

TheSSLIOP module holds the structure and TAG definitions needed for using SSL
the secure transport under CORBA Security. This module depends on theSecurity
and theIOP modules.

#if !defined(_SSLIOP_IDL)
#define _SSLIOP_IDL
#pragma prefix "omg.org"
#include <IOP.idl>
#include<Security.idl>

module SSLIOP {
// Security mechanism SSL

const IOP::ComponentId TAG_SSL_SEC_TRANS = 20;

struct SSL {
Security::AssociationOptions target_supports;
Security::AssociationOptions target_requires;
unsigned short port;

};
};
#endif /* _SSLIOP_IDL */

B.10 Secure DCE CIOP

The DCE_CIOP_Security module extension holds structures and TAG definitions
needed for using DCE-CIOP Security. This module depends onSecurity and IOP
modules.
Security Service V1.5 May 2000 B-25



B

he
sers
ed.

the

ily
es
#if !defined(_DCE_CIOP_SECURITY_IDL)
#define _DCE_CIOP_SECURITY_IDL
#pragma prefix "omg.org"
#include <IOP.idl>
#include <Security.idl>

module DCE_CIOPSecurity {

const IOP::ComponentId TAG_DCE_SEC_MECH = 103;

typedef unsigned short DCEAuthorization;

const DCEAuthorization DCEAuthorizationNone = 0;
const DCEAuthorization DCEAuthorizationName = 1;
const DCEAuthorization DCEAuthorizationDCE = 2;

// since consts of type octet are not allowed in IDL the constant
// values that can be assigned to the authorization_service field
// in the DCESecurityMechanismInfo is declared as unsigned shorts.
// when they actually get assigned to the authorization_service field
// they should be assigned as octets.

struct DCESecurityMechanismInfo {
octet authorization_service;
sequence<IOP::TaggedComponent> components;

};
};

#endif /* _DCE_CIOP_SECURITY_IDL */

B.11 Values for Standard Data Types

A number of data types in this specification allow an extensible set of values, so t
user can add values as required to meet his own security policies. However, if all u
defined their own values, portability and interoperability would be seriously restrict

Therefore, some standard values for certain data types are defined. These include
values that identify:

• Security attributes (privilege and other attribute types)

• Rights families

• Audit event families and types

• Security mechanism types as used in theIOR (andVault , etc.)

Rights families and audit event families are defined as anExtensibleFamily type. This
has a family definer value registered with OMG and a family id defined by the fam
definer. Security attribute types also have family definers. Family definers with valu
0 - 7 are reserved for OMG. The family value0 is used for defining standard types
(e.g., of security attributes).
B-26 Security Service V1.5 May 2000



B

ies

g
of

f
en
B.11.1 Attribute Types

Section 2.3, “Application Developer’s Interfaces,” on page 2-71 defines an attribute
structure for privilege and other attributes. This includes:

• A family, as previously described.

• An attribute type. Users may add new attribute types. Two standard OMG famil
are defined: the family of privilege attributes (family = 1), and the family of other
attributes (family = 0). Types in these families are listed in the following table.

• An optional defining authority. This indicates the authority responsible for definin
the value within the attribute type. Some policies demand that multiple sources
values for a given attribute type be supported (e.g., a policy accepting attribute
values defined outside the security domain). These policies give rise to a risk o
value clashes. The defining authority field is used to separate these values. Wh
not present (i.e.,length = 0), the value defaults to the name of the authority that
issued the attribute.

• An attribute value. The attribute value is defined as asequence<octet>, which
someone who understands that attribute type can decipher.

Table B-1 Attribute Values

Attribute Type
Value

Meaning

Privilege Attributes (family = 1) All privilege attributes are used for access control

Public 1 The principal has no authenticated identity

AccessId 2 The identity of the principal used for access
control

PrimaryGroupId 3 The primary group to which the principal belongs

GroupId 4 A group to which the principal belongs

Role 5 A role the principal takes

AttributeSet 6 An identifier for a set of related attributes, which a
user or application can obtain

Clearance 7 The principal’s security clearance

Capability 8 A capability

Other Attributes (family = 0)

AuditId 1 The identity of the principal used for auditing

AccountingId 2 The id of the account to be charged for resource
use

NonRepudiationId 3 The id of the principal used for non-repudiation
Security Service V1.5 May 2000 B-27



B

er

n.

ecure
s,

rom
in
B.11.2 Rights Families and Values

Administration is simplified by defining rights that provide access to a set of
operations, so the administrator only needs to know what rights are required, rath
than the semantics of particular operations.

Rights are grouped into families. Only one rights family is defined in this specificatio
The family definer is OMG (value0) and the family id is CORBA (value1). Other
families may be added by vendors or users.

Three values are specified for the standard CORBA rights family.

Table B-2 CORBA Rights Family Values

B.11.3 Audit Event Families and Types

Events, like rights, are grouped into families as defined in Section 2.3, “Application
Developer’s Interfaces,” on page 2-71.

Only one event family is defined in this specification. This has a family definer of
OMG (value0) and family of SYSTEM (value1) and is used for auditing system
events. All events of this type are audited by the object security services, or the
underlying security services they use. Some of these events must be audited by s
object systems conforming to Security Functionality Level 1 (though in some case
the event may be audited by underlying security services). Other event types are
identified so that, if produced, a standard record is generated, so that audit trails f
different systems can more easily be combined. System audit events are specified
the table below.

Right Meaning

“get” Used for any operation on the object that does not change its state

“set” For operations on an object that changes its state

“manage” For operations on the attributes of the object, not its state

“use” For operations on an object that may change the overall state of
the system, but not the state of the object itself
B-28 Security Service V1.5 May 2000



B

ons.
the

ing
M_1
Table B-3 System Audit Events

Application audit policies are expected to use application audit families.

B.11.4 Security Mechanisms

The security specification allows use of different mechanisms for security associati
These are used in the Interoperable Object Reference and also on the interface to
Vault.

Mechanism ids that are formed by stringifying the integer value of the correspond
mechanism tag value. So, for example the mechanism id of mechanism type SPK
is the string “15”, which is the string representation of the mechanism tag value
defined in the SECIOP module above as TAG_SPKM_1_SEC_MECH.

Following this rule, the currently defined mechanism ids are listed in the table below.

Event Name Value Whether
Mandatory

Meaning and Event Specific Data

AuditPrincipalAuth 1 Yes Authentication of principals, either via the
principal authentication interface or
underlying security services

AuditSessionAuth 2 Yes Security association/peer authentication

AuditAuthorization 3 Yes Authorization of an object invocation
(normally using an Access Decision
object)

AuditInvocation 4 No Object invocation (i.e. the request/reply)

AuditSecEnvChange 5 No Change to the security environment for
this client or object (e.g.
override_default_credentials)

AuditPolicyChange 6 Yes Change to a security policy (using the
administrative interfaces in Section 15.6,
Administrator’s Interfaces)

AuditObjectCreation 7 No Creation of an object

AuditObjectDestruction 8 No Destruction of an object

AuditNonRepudiation 9 No Generation or verification of evidence

Table B-4 Mechanism Ids

Mechanism Name Mechanism Tag Mech Id Base Mech

SPKM_1 TAG_SPKM_1_SEC_MECH “15” SPKM

SPKM_2 TAG_SPKM_2_SEC_MECH “16” SPKM

KerberosV5 TAG_KerberosV5_SEC_MECH “17” KerberosV5
Security Service V1.5 May 2000 B-29



B

Cryptographic profile ids are the stringified form of the value of the cryptographic
profile constant. For example the id of the cryptographic profileMD5_RSA is the
string “20”. The cryptographic profile ids currently defined are listed below.

A complete mechanism type (used forMechanismTypeparameters) consists of a
mechanism id with zero, one or more comma separated cryptographic profiles
appended to it. For example the mechanism type “15,20” representsSPKM_1
mechanism withMD5_RSA cryptographic profile.

CSI_ECMA_Secret TAG_CSI_ECMA_Secret_SEC_MECH “18” CSI_ECMA

CSI_ECMA_Hybrid TAG_CSI_ECMA_Hybrid_SEC_MECH “19” CSI_ECMA

CSI_ECMA_Public TAG_CSI_ECMA_Public_SEC_MECH “21” CSI_ECMA

Table B-5 Cryptographic Profile Ids

Profile Name Profile Id Base Mech

MD5_RSA “20” SPKM

MD5_DES_CBC “21” SPKM

DES_CBC “22” SPKM

MD5_DES_CBC_SOURCE “23” SPKM

DES_CBC_SOURCE “24” SPKM

DES_CBC_DES_MAC “10” KerberosV5

DES_CBC_MD5 “11” KerberosV5

DES_MAC “12” KerberosV5

MD5 “13” KerberosV5

FullSecurity “1” CSI_ECMAS

NoDataConfidentiality “2” CSI_ECMA

LowGradeConfidentaility “3” CSI_ECMA

AgreedDefault “5” CSI_ECMA

Table B-4 Mechanism Ids

Mechanism Name Mechanism Tag Mech Id Base Mech
B-30 Security Service V1.5 May 2000



Relationship toOtherServices C
ay

d by
2-1,

data
ay

.
iting

even
a

in a
the
e

e is
C.1 Introduction

This appendix describes the relationship between Object Services and Common
Facilities and the security architecture components, if they are to participate in a
consistent, secure object system.

C.2 General Relationship to Object Services and Common Facilities

In general, Object Services and Common Facilities, like any application objects, m
be unaware of security, and rely on the security enforced automatically on object
invocations. As for application objects, access to their operations can be controlle
access policies as described in Section 2.1, “Security Reference Model,” on page
Section 2.3, “Application Developer’s Interfaces,” on page 2-71, and elsewhere.

An Object Service or Common Facility needs to be aware of security if it needs to
enforce security itself. For example, it may need to control access to functions and
at a finer granularity than at object invocation, or need to audit such activities. The w
it can do this is described in Section 2.1, “Security Reference Model,” on page 2-1
Existing Object Services should be reviewed to see if such access control and aud
is required.

If an Object Service or Common Facility is required to be part of a more secure
system, some assurance of its correct functioning, if security relevant, is needed,
if it is not responsible for enforcing security itself. See Appendix D, “Guidelines for
Trustworthy System” for guidelines on this matter.

Where an Object Service is called by an ORB service as part of object invocation
secure system, there is a need to ensure security of all the information involved in
invocation. This requires ORB Services to be called in the order required to provid
the specified quality of protection. For example, the Transaction Service must be
invoked first to obtain the transaction context information before the whole messag
protected for integrity and/or confidentiality.
Security Service V1.5 May 2000 C-1



C

en

ed
here
d.
s

nal

ice

the

, in
data
s

as

ime

hat
In the following sections, we provide an initial estimation of the relationship betwe
Security Service and other existing services and facilities.

C.3 Relationship with Specific Object Services

C.3.1 Naming Service

For security, the object must be correctly identified wherever it is within the distribut
object system. The Naming Service must do this successfully in an environment w
an object name is unique within a naming context, and name spaces are federate
(However, to provide the required proof of identity, objects, and/or the gatekeeper
which give access to them will be authenticated using a separate Authentication
Service.) See Appendix E, Section E.3.2, “Basis of Trust,” on page E-9, for additio
information about the relationship between security and names.

C.3.2 Event Service

The implementation of a Security Audit Service may involve the use of Event Serv
objects for the routing of both audits and alarms.

However, this is only possible if the Event Service itself is secure in that it protects
audit trail from modification and deletion. It must also be able to guard against
recursion if it audits its own activities.

C.3.3 Persistent Object Service

No explicit use is made of this service. Audit trails may be saved using this service
which case the implementation of the Persistent Object Service must ensure that
stored and retrieved through it is not tampered with by unauthorized entities. If it i
used in the implementation of Security Service or by a secure application, it must
follow the guidelines in Appendix D, “Guidelines for a Trustworthy System.”

C.3.4 Time Service

The Security Service uses the data types for time, timestamps, and time intervals
defined by the Time Service, so that applications can readily use the Time Service
defined interfaces to manipulate the time data that the Security Service uses. The
interfaces of Security Service do not explicitly pass any interfaces defined in the T
Service.

C.3.5 Other Services

The other services are not used explicitly. If any of them are used in the
implementation of Security Service or by a secure application, it must be verified t
the service used follows the guidelines in Appendix D.
C-2 Security Service V1.5 May 2000



C

d

r

.

C.4 Relationship with Common Facilities

Because Management Services have been identified as Common Facilities in the
Object Management Architecture, only minimal, security-specific administration
interfaces are specified here. When Common Facilities Management services are
specified, they will need to take into account the need for security management an
administration identified in this specification. Also, such management services will
themselves need to be secure.

This specification adds certain basic interfaces to CORBA, which form the basis fo
the minimal policy administration related interfaces and functionality that has been
provided. Future management facilities are expected to build upon this foundation
Security Service V1.5 May 2000 C-3



C

C-4 Security Service V1.5 May 2000



ConformanceDetailsandStatement D
ol

o
s
and

to
D.1 Introduction

CORBA Security Feature Packages include:

• Main security functionality . There are two possible levels.

• Level 1: This provides a first level of security for applications unaware of
security, and for those that have limited requirements to enforce their own
security in terms of access controls and auditing.

• Level 2: This provides more security facilities, and allows applications to contr
the security provided at object invocation. It also includes administration of
security policy, allowing applications administering policy to be portable.

• Security Functionality Options. These are functions expected to be required in
several ORBs, so are worth including in this specification, but are not generally
required enough to form part of one of the main security functionality levels
previously specified. There is only one such option in the specification.

• Non-Repudiation: This provides generation and checking of evidence so that
actions cannot be repudiated.

• Security Replaceability. This specification is designed to allow security policies t
be replaced. The additional policies must also conform to this specification. Thi
includes, for example, new Access Polices. Security Replaceability specifies if
how the ORB fits with different security services. There are two possibilities.

• ORB Services replaceability: The ORB uses interceptor interfaces to call on
object services, including security ones. It must use the specified interceptor
interfaces and call the interceptors in the specified order. An ORB conforming
this does not include any significant security-specific code, as that is in the
interceptors.
Security Service V1.5 May 2000 D-1



D

d in
ces
e

e

ons
for

ther

e

lso

m
er
iate
• Security Service replaceability: The ORB may or may not use interceptors, but
all calls on security services are made via the replaceability interfaces specifie
Section 2.5, “Implementor’s Security Interfaces,” on page 2-143. These interfa
are positioned so that the security services do not need to understand how th
ORB works, so they can be replaced independently of that knowledge.

An ORB that supports one or both of these replaceability options is said to be
Security Ready (i.e., support no security functionality itself, but be ready to hav
security added).

Note: Some replaceability of the security mechanism used for secure associati
may still be provided if the implementation uses some standard generic interface
security services such as GSS-API.

• Secure Interoperability using SECIOP: An ORB supporting this can generate/use
security information in the IOR and can send/receive secure requests to/from o
ORBs using the GIOP/IIOP protocol with the security (SECIOP) enhancements
defined in Section 3.2, “Secure Inter-ORB Protocol (SECIOP),” on page 3-34,
providing they can both use the same underlying security mechanism and
algorithms for security associations.

• Common Secure Interoperability (CSI) Feature packages: These feature
packages each provide different levels of secure interoperability. There are thre
functionality levels for Common Secure Interoperability (CSI).

All levels can be used in distributed secure CORBA compliant object systems
where clients and objects may run on different ORBs and different operating
systems. At all levels, security functionality supported during an object request
includes (mutual) authentication between client and target and protection of
messages - for integrity, and when using an appropriate cryptographic profile, a
for confidentiality.

An ORB conforming to CSI level 2 can support all the security functionality
described in the CORBA Security specification. Facilities are more restricted at
levels 0 and 1. The three levels are:

1.Identity based policies without delegation (CSI level 0): At this level, only the
identity (no other attributes) of the initiating principal is transmitted from the
client to the target, and this cannot be delegated to further objects. If further
objects are called, the identity will be that of the intermediate object, not the
initiator of the chain of object calls.

2.Identity based policies with unrestricted delegation (CSI level 1): At this level,
only the identity (no other attributes) of the initiating principal is transmitted fro
the client to the target. The identity can be delegated to other objects on furth
object invocations, and there are no restrictions on its delegation, so intermed
objects can impersonate the user. (This is the impersonation form of simple
delegation defined in Section 2.1.6.2, “Overview of Delegation Schemes,” on
page 2-14.)
D-2 Security Service V1.5 May 2000



D

roles

lly,
al
g

ges.

ions
in

n
nd
se
P.

out
e

s
er

ned

e
ns
SI-

g

SL
P.
3.Identity & privilege based policies with controlled delegation (CSI level 2): At
this level, attributes of initiating principals passed from client to target can
include separate access and audit identities and a range of privileges such as
and groups. Delegation of these attributes to other objects is possible, but is
subject to restrictions, so the initiating principal can control their use. Optiona
composite delegation is supported, so the attributes of more than one princip
can be transmitted. Therefore, it provides interoperability for ORBs conformin
to all CORBA Security functionality.

An ORB that interoperates securely must provide at least one of the CSI packa
For the definitive statement on conformance requirements see Appendix C
“Conformance Details.”

• Common Security Protocol packages: The choice of protocol to use depends on
the mechanism type required and the facilities required by the range of applicat
expected to use it. Common Security Protocols define the details of the tokens
the IIOP and SECIOP messages as applicable. Four protocols are defined:

1.SPKM Protocol: This protocol supports identity based policies without delegatio
(CSI level 0) using public key technology for keys assigned to both principals a
trusted authorities. The SPKM protocol is based on the definition in [20]. The u
of SPKM in CORBA interoperability is based on the SECIOP extensions to IIO

2.GSS Kerberos Protocol: This protocol supports identity based policies with
unrestricted delegation (CSI level 1) using secret key technology for keys
assigned to both principals and trusted authorities. It is possible to use it with
delegation (providing CSI level 0). The GSS Kerberos protocol is based on th
[12] which itself is a profile of [13]. The use of Kerberos in CORBA
interoperability is based on the SECIOP extensions to IIOP.

3.CSI-ECMA protocol: This protocol supports identity and privilege based policie
with controlled delegation (CSI level 2). It can be used with identity, but no oth
privileges and without delegation restrictions if the administrator permits this
(CSI level 1) and can be used without delegation (CSI level 0). For keys assig
to principals, it has the following options:

• It can use either secret or public key technology.

• It uses public key technology for keys assigned to trusted authorities.

The CSI-ECMA protocol is based on the ECMA GSS-API Mechanism as
defined in ECMA 235, but is a significant subset of this - the SESAME profil
as defined in [16]. It is designed to allow the addition of new mechanism optio
in the future; some of these are already defined in ECMA 235. The use of C
ECMA in CORBA interoperability use the SECIOP extensions to IIOP

DCE-CIOP: An ORB supporting this option provides secure interoperability usin
DCE Security together with the Security extensions to DCE-CIOP.

4.SSL protocol: This protocol supports identity based policies without delegation
(CSI level 0). The SSL protocol is based on the definition in [21]. The use of S
in CORBA interoperability does not depend on the SECIOP extensions to IIO
Security Service V1.5 May 2000 D-3



D

ges.

A

the
es,
r in

are

RB.
An ORB that interoperates securely must do so using one of these protocol packa
For the definitive statement on conformance requirements see Appendix E
“Conformance Statement.”

D.2 Conformance Requirements

An ORB must meet the following requirements to claim conformance to the CORB
Security specification:

• To claim conformance to theCORBA Security interfaces it must support the
following feature packages:

• Security Functionality Level 1.

• To claim conformance toCORBA Secure Interoperability it must support the
following feature packages:

• Secure Interoperability using SECIOP.
• CSI Level 1.

• GSS Kerberos Protocol using MD5 Cryptographic profile.

• Conformance to any of the other feature packages may be claimed in addition to
base conformance specified in the previous bullet item, by providing the interfac
facilities and support for protocols specified in that package, as described furthe
the following sections.

The conformance statement required for a CORBA Security conformant
implementation is defined in Appendix F, “Facilities Not in This Specification.”
Appendix F includes two checklists, one for functionality and the other for
interoperability, which can be completed to show what the ORB conforms to; they
reproduced next. A main security functionality level must always be specified.
Functional Options, Security Replaceability, and Secure Interoperability should be
indicated by checking the boxes corresponding to the function supported by the O

Table C-1 CORBA Security Functionality Checklist

Main Functionality
Functionality

Options Security Replaceability

Level 1 Level 2
Non

Repudiation
ORB

Services
Security
Services

Security
Ready

Table C-2 CORBA Secure Interoperability Checklist

Interop IIOP DCE-

Level
SECIOP

SSL CIOPSPKM

Kerberos

CSI-ECMA

SPKM
1

SPKM
2

Privat
e

Public Hybri
d

D-4 Security Service V1.5 May 2000



D

ty

cure

rols
s

ate

ay

duct
r

ust
D.3 Security Functionality Level 1

Security Functionality Level 1 provides:

• A level of security functionality available to applications unaware of security. (It
will, of course, also provide this functionality to applications aware of security.)
This level includes security of the invocation between client and target object,
simple delegation of client security attributes to targets, ORB-enforced access
control checks, and auditing of security-relevant system events.

• An interface through which a security-aware application can retrieve security
attributes, which it may use to enforce its own security policies (e.g., to control
access to its own attributes and operations).

D.3.1 Security Functionality Required

An ORB supporting Level 1 security functionality must provide the following securi
features for all applications, whether they are security-aware or not.

• Allow users and other principals to be authenticated, though this may be done
outside the object system.

• Provide security of the invocation between client and target object including:

• Establishment of trust between them, where needed. At Level 1, this may be
supported by ORB level security services or can be achieved in any other se
way. For example, it could use secure lower-layer communications. Mutual
authentication need not be supported.

• Integrity and/or confidentiality of requests and responses between them.

• Control of whether this client can access this object. At this level, access cont
can be based on “sets” of subjects and “sets” of objects. Details of the Acces
Policy and how this is administered are not specified.

• At an intermediate object in a chain of calls, the ability to be able to either deleg
the incoming credentials or use those of the intermediate object itself.

• Auditing of the mandatory set of system’s security-relevant events specified in
Appendix A, Consolidated OMG IDL. In some cases, the events to be audited m
occur, and be audited, outside the object system (for example, in underlying
security services). In this case, the conformance statement must identify the pro
responsible for generating the record of such an event (or choice of product, fo
example, when the ORB is portable to different authentication services).

At this level, auditing of object invocations need not be selectable. However, it m

Level 0

Level 1 XXXX XXXX XXX

Level 2 XXXX XXXX XXXXX XXX

Table C-2 CORBA Secure Interoperability Checklist

Interop IIOP DCE-
Security Service V1.5 May 2000 D-5



D

trol

or

,

ns

ty

y
l

in
tive
be possible to ensure that certain events are audited (see Appendix B,
Section B.11.3, “Audit Event Families and Types,” on page B-28, for the list of
mandatory events).

Note – For security aware applications, it must also make the privileges of
authenticated principals available to applications for use in application access con
decisions.

These facilities require the ORB and security services to be initialized correctly. F
example, the Current object at the client must be initialized with a reference to a
credentials object for the appropriate principal.

D.3.2 Security Interfaces Supported

Security interfaces available to applications may be limited to:

• get_service_informationproviding security options and details (see Section 2.3.2
“Finding Security Features,” on page 2-73).

• get_attributes on Current (see Interfaces under Section 2.3.7, “Security Operatio
on Current,” on page 2-93).

No administrative interfaces are mandatory at this level.

D.3.3 Other Security Conformance

An ORB providing Security Functionality Level 1 may also conform to other securi
options. For example, it may also:

• Support some of the Security Functionality Options specified in,Section D.5,
“Security Functionality Optional Packages,” on page D-8.

• Provide security replaceability using either of the replaceability options.

• Provide secure interoperability, though in this case, will need to provide securit
associations at the ORB level (not lower-layer communications) as the protoco
assumes security tokens are at this level.

D.4 Security Functionality Level 2

This is the functionality level that supports most of the application interfaces defined
Section 2.3, “Application Developer’s Interfaces,” on page 2-71, and the administra
interfaces defined in Section 2.4, “Administrator’s Interfaces,” on page 2-116. It
provides a competitive level of security functionality for most situations.

D.4.1 Security Functionality Required

An ORB that supports Security Functionality Level 2 supports the functionality in
Security Level 1 previously defined, and also:
D-6 Security Service V1.5 May 2000



D

, so

n of

ols).

or

tems

he

rd

to
urity

ng

d

• Principals can be authenticated outside or inside the object system.

• Security of the invocation between client and target objects is enhanced.

• Establishment of trust and message protection can be done at the ORB level
security below this (for example, in the lower layer communications) is not
required (though may be used for some functions).

• Further integrity options can be requested (e.g., replay protection and detectio
messages out of sequence) but need not be supported.

• The standardDomainAccessPolicyis supported for control of access to
operations on objects.

• Selective auditing of methods on objects is supported.

• Applications can control the options used on secure invocations. It can:

• Choose the quality of protection of messages required (subject to policy contr

• Change the privileges in credentials.

• Choose which credentials are to be used for object invocation.

• Specify whether these can just be used at the target (e.g. for access control)
whether they can also be delegated to further objects.

• No further delegation facilities are mandatory, but the application can request
“composite” delegation, and the target can obtain all credentials passed, in sys
that support this. Note that “composite” here just specifies that both received
credentials and the intermediate’s own credentials should be used. It does not
specify whether this is done by combining the credentials or linking them.

• Administrators can specify security policies using domain managers and policy
objects as specified in Section 2.4, “Administrator’s Interfaces,” on page 2-116. T
security policy types supported at Level 2 are all those defined in Section 2.4,
“Administrator’s Interfaces,” on page 2-116 except non-repudiation. The standa
policy management interfaces for each of the Level 2 policies is supported.

• Applications can find out what security policies apply to them. This includes
policies they enforce themselves (e.g., which events types to audit) and some
policies the ORB enforces for them (e.g., default qop, delegation mode).

• ORBs (and ORB Services, if supported) can find out what security policies apply
them. They can then use these policy objects to make decisions about what sec
is needed (check if access is permitted, check if auditing is required) or get the
information needed to enforce policy (get QOP, delegation mode, etc.) dependi
on policy type.

As at Level 1, these facilities require the ORB and security services to be initialize
correctly.

D.4.2 Security Interfaces Supported

Interfaces supported at this level are:

• All application interfaces defined in Section 2.3, “Application Developer’s
Interfaces,” on page 2-71, except those in Section 2.1.7, “Non-repudiation,” on
page 2-18.
Security Service V1.5 May 2000 D-7



D

le

le,”

ty

ng

ere

y

• All security policy administration interfaces defined in Section 15.6,
Administrator’s Interfaces (except those for the non-repudiation policy).

Note that some of these interfaces may raise aCORBA::NO-IMPLEMENT
exception, as not ORBs conforming to Level 2 Security need implement all possib
values of all parameters. This will happen when:

• A privilege attribute is requested of a type that is not supported (attribute types
supported are defined in Appendix B, Section B.2, “General Security Data Modu
on page B-1).

• A delegation mode is requested, which is not supported.

• A communication direction for association options is requested, which is not
supported.

D.4.3 Other Security Conformance

An ORB providing Security Functionality Level 2 may also conform to other securi
options. For example, it may also:

• Support some of the Security Functionality Options specified in Section D.6,
“Security Replaceability,” on page D-9.

• Provide security replaceability, using either of the replaceability options.

• Provide secure interoperability.

D.5 Security Functionality Optional Packages

An ORB may also conform to optional security functionality defined in this
specification. Only one optional facilities is specified: non-repudiation.

Also, some requirements on conformance of additional facilities are specified.

D.5.1 Non-repudiation

D.5.1.1 Security Functionality

An ORB conforming to this must support the non-repudiation facilities for generati
and verifying evidence described in Section 2.2.5.1, “The Model as Seen by
Applications,” on page 2-41. Note that these useNRCredentials, the attributes in
which may be the same as in the credentials used for other security facilities. Wh
non-repudiation is supported, the credentials acquired from the environment or
generated by the authenticate operation must be able to support non-repudiation.

D.5.1.2 Security Operations Supported

The following operations must be supported. All are available to applications. The
are:
D-8 Security Service V1.5 May 2000



D

8.

,”

hich

n-

nal
e

sed

ced
one

can
• set_/get_NR_featuresas defined in Section 2.1.7, “Non-repudiation,” on page 2-1

• generate_token, verify_evidence, form_complete_evidenceandget_token_details
of NRCredentials object as defined in Section 2.1.7, “Non-repudiation,” on
page 2-18.

• Use ofset/get_credentialson Current specifying the type of credentials to be used
is NRCredentials.

• NRPolicy object with associated interfaces as in Section 2.1.7, “Non-repudiation
on page 2-18.

D.5.1.3 Fit with Other Security Conformance

Non-repudiation requires use of credentials; thus it can only be used with ORBs, w
support some of the interfaces defined in Security Functionality level 2. However,
conformance to all of Security Functionality Level 2 is not a prerequisite for
conformance to the non-repudiation security functionality option.

Secure interoperability as defined in Section D.7, “Secure Interoperability,” on
page D-11, is not affected by non-repudiation. The evidence may be passed on an
invocation as a parameter to a request, but the ORB need not be aware of this.

The current specification does not specify interoperability of evidence (i.e. one no
repudiation service handling evidence generated by another).

D.5.2 Conformance of Additional Policies

This specification is designed to allow security policies to be replaced. The additio
policies must also conform to some of the interfaces in this specification if they ar
used to replace the standard policies automatically enforced on object invocation.

The case described next is for the addition of a new Access Policy which can be u
for controlling access to objects automatically, replacing the standard
DomainAccessPolicy.

Clearly, other policies can be replaced. For example, the audit policy could be repla
by one that used different selectors, or the delegation policy could be replaced by
that supported more advanced features.

D.6 Security Replaceability

This specifies how an ORB can fit with security services, which may not come from
the same vendor as the ORB. As explained above, there are two levels where this
be done (apart from any underlying APIs used by an implementation).

D.6.1 Security Features Replaceability

Conformance to this allows security features to be replaced.
Security Service V1.5 May 2000 D-9



D

to
ng

) to

s,”

be

nt

. It
trol

ned

as

ess

,

If it is provided without conformance to the ORB Service replaceability option (see
Section D.6.2, “ORB Services Replaceability,” on page D-10), it requires the ORB
have a reasonable understanding of security, handling credentials, etc. and knowi
when and how to call on the right security services.

Support for this replaceability option requires an ORB (or the ORB Services it uses
use the implementation-level security interfaces as defined in Section 2.5,
“Implementor’s Security Interfaces,” on page 2-143. This includes:

• TheVault , Security Context, Access Decision, Audit andPrincipal Authentication
objects defined in Section 2.5.2, “Implementation-Level Security Object Interface
on page 2-149.

• Certain features of the CORBA Core needed for ORB Service Replaceability can
found in theCommon Object Request Broker: Architecture and Specification.

D.6.2 ORB Services Replaceability

Conformance to this allows an ORB to know little about security except which
interceptors to call in what order. This is intended for ORBs, which may use differe
ORB services from different vendors, and require these to fit together. It therefore
provides a generic way of calling a variety of ORB Services, not just security ones
also assumes that any of these services may have associated policies, which con
some of their actions.

Support for this replaceability option requires an ORB to:

• Use the Interceptor interfaces defined in the Interceptor chapter of theCommon
Object Request Broker: Architecture and Specificationto call security interceptors
defined in Section 2.5.1, “Security Interceptors,” on page 2-144, in the order defi
there.

• Use theget_policyoperation (and the associated security policy operations such
access_allowed, audit_neededdefined in Section 2.1.4, “Access Control Model,” on
page 2-7 and Section 2.3.8, “Security Audit,” on page 2-100 respectively, for acc
control and audit and alsoget_association_optionsandget_delegation_mode
defined in Section 2.4.6, “Secure Invocation and Delegation Policies,” on
page 2-135, for association options, quality of protection of messages, and
delegation).

D.6.3 Security Ready for Replaceability

An ORB is Security Ready for Replaceability if it does not provide any security
functionality itself, but does support one of the security replaceability options.

D.6.3.1 Security Functionality Required

An ORB that is Security Ready does not have to provide any security functionality
though must correctly respond to a request for the security features supported.
D-10 Security Service V1.5 May 2000



D

the

ty,
ls on

nt

Rs),

ons,
nce the
.2,

y

,
urity

7,

r,
may
sed.
D.6.3.2 Security Interfaces Supported

• get_service_informationoperation providing security options and details (see
Section 2.3.2, “Finding Security Features,” on page 2-73).

• get_current operation to obtain the Current object for the execution context (see
ORB Interface chapter of theCommon Object Request Broker: Architecture and
Specification).

D.6.3.3 Other Security Conformance

An ORB that is Security Ready for replaceability supports one of the replaceability
options. This should be done in such a way that the ORB can work without securi
but can take advantage of security services when they become available. So it cal
the replaceability interfaces correctly (using dummy routines to replace security
services when these are needed, but not available).

D.7 Secure Interoperability

The definition of secure interoperability in this document specifies that a conforma
ORB can:

• Generate, and take appropriate action on, Interoperable Object References (IO
which include security tags as specified in Section 3.1.4, “CORBA Interoperable
Object Reference with Security,” on page 3-7.

• Transmit and receive the security tokens needed to establish security associati
and also the protected messages used for protected requests and responses o
association has been established according to the protocol defined in Section 3
“Secure Inter-ORB Protocol (SECIOP),” on page 3-34

Note that a Security Ready ORB (i.e., with no built-in security functionality) may, b
additions of appropriate security services, conform to secure interoperability.

For ORBs to interoperate securely, they must choose to use the same mechanism
algorithms, etc. (or use a bridge between them, if available). A set of standard sec
mechanisms and algorithms are described in subsections.

D.7.1 Standard Secure Interoperability

An ORB that conforms to this must support the security-enhanced IOR defined in
Section 3.1.4, “CORBA Interoperable Object Reference with Security,” on page 3-
and also GIOP/IIOP protocol with the SECIOP enhancements as defined in
Section 3.2, “Secure Inter-ORB Protocol (SECIOP),” on page 3-34.

As for CORBA 2, this may be done by immediate bridges or half bridges. (Howeve
use of half bridges implies more complex trust relationships, which some systems
not be able to support.) This allows a large range of security mechanisms to be u
Security Service V1.5 May 2000 D-11



D

re
all

and

ed
ted.

ects.
he

e
t in

d to

nds

ects

rust
ce,
D.7.2 Common Secure Interoperability Levels

There are three functionality levels for Common Secure Interoperability (CSI). An
example of the difference in use of the three levels is explained in Section D.7.2,
“Common Secure Interoperability Levels,” on page D-12.

All levels can be used in distributed secure CORBA compliant object systems whe
clients and objects may run on different ORBs and different operating systems. At
levels, security functionality supported during an object request includes (mutual)
authentication between client and target and protection of messages - for integrity,
when using an appropriate cryptographic profile, also for confidentiality.

An ORB conforming to CSI level 2 can support all the security functionality describ
in this specification. Facilities that are supportable at levels 0 and 1 are more restric
The three levels are:

1. Identity based policies without delegation (CSI level 0)
At this level, only the identity (no other attributes) of the initiating principal is
transmitted from the client to the target, and this cannot be delegated to further obj
If further objects are called, the identity will be that of the intermediate object, not t
initiator of the chain of object calls.

Access and audit policies at this level are based on the identity of the immediate
invoker. So access and audit policies in encapsulated objects which depend on th
initiator of the chain, can only be used at the point of entry to the object system, no
further objects encapsulated by it.

As the attributes of principals are not delegated, environments should not be truste
pass on principal information which should be controlled.

Examples of applications which can use level 0 facilities are wrapped legacy
applications and telephone switches. If a CSI level 0 ORB also supports non-
repudiation, it can also be used for other types of applications such as electronic fu
transfer.

2. Identity based policies with unrestricted delegation (CSI level 1)
At this level, only the identity (no other attributes) of the initiating principal is
transmitted from the client to the target. The identity can be delegated to other obj
on further object invocations, and there are no restrictions on its delegation, so
intermediate objects can impersonate the user. (This is the impersonation form of
simple delegation defined in Section 2.1.6, “Delegation,” on page 2-13.)

Access and audit policies at this level can be based on the identity of the initiating
principal or immediate invoker, depending on the delegation policy.

As delegation is not restricted, once an initiator has delegated his identity, it must t
the objects it calls not to abuse its delegated rights to act as the initiator. In practi
this will limit the type of environment in which level 1 should be used to relatively
closed environments.
D-12 Security Service V1.5 May 2000



D

k

de
roups.
ons,

re, it

s
and

e the
d to

r-

s

m

g

e

ts.
An example of an application environment which can use level 1 facilities is a bac
office system protected by firewalls where identity based policies are acceptable.

3. Identity & privilege based policies with controlled delegation (CSI
level 2)
At this level, attributes of initiating principals passed from client to target can inclu
separate access and audit identities and a range of privileges such as roles and g
Delegation of these attributes to other objects is possible, but is subject to restricti
so the initiating principal can control their use. Optionally, composite delegation is
supported, so the attributes of more than one principal can be transmitted. Therefo
provides interoperability for ORBs conforming to all CORBA Security functionality.

Access and audit policies are based on the attributes of initiating principals. At thi
level, a wider range of policies can be supported (e.g., role based access controls
mandatory access controls using the initiating principal’s security clearance).

At this level, an initiator needs to trust those targets which it has allowed to use its
attributes not to abuse these. It does not have to trust these targets not to delegat
attributes outside the trusted set of targets, as the delegation controls can be use
prevent this.

This level can be used for a wide range of applications in large enterprise and inte
enterprise networks.

D.7.3 SECIOP Hosted Interoperability Mechanisms

The following conformance can be claimed:

• SPKM at level 0 by providing the specified CSI level using the SPKM protocol
(mechanismSPKM_1 and optionally alsoSPKM_2).

• KerberosV5 at level 0 or 1 by providing the specified CSI level using the Kerbero
protocol.

• CSI-ECMA Public Key at level 0, 1, or 2 by providing the specified level of CSI
functionality using the CSI-ECMA protocol with the public key option (mechanis
CSI_ECMA_Public).

• CSI-ECMA Secret Key at level 0, 1, or 2 by providing the specified CSI level usin
the CSI-ECMA protocol with the secret key option (mechanism
CSI_ECMA_Secret).

• CSI-ECMA Hybrid at level 0, 1, or 2 by providing the specified CSI level using th
CSI-ECMA protocol with the hybrid key option (mechanismCSI_ECMA_Hybrid ).

In addition, a conformant ORB must specify all the cryptographic profiles it suppor
Security Service V1.5 May 2000 D-13



D

I
ed

ing

ted

ude

t

an

-

nds
e
le
r a

d by
D.7.4 Secure Interoperability with SSL

Conformance can be claimed for CORBA Security based on SSL by providing CS
level 0 functionality using SSL on IIOP using any of the cryptographic profiles defin
in[21]. A conformant ORB must specify which of the cryptographic profiles are
supported by it.

D.7.5 Secure Interoperability with DCE-CIOP

An ORB that conforms to this must conform to Standard Secure Interoperability us
GIOP/IIOP as described in Section D.7.1, “Standard Secure Interoperability,” on
page D-11, and also support secure interoperability using DCE-CIOP as defined in
Section 3.8, “DCE-CIOP with Security,” on page 3-105.

Both the Kerberos V5 based SECIOP Security and DCE Security must be suppor
for this option. Any version of DCE up to and including DCE 1.1 is supported; the
DCE interfaces and protocols are specified in [5]

D.8 Conformance Statement

D.8.1 Introduction

A secure object system, like any secure system, should not only provide security
functionality, but should also provide some assurance of the correctness and
effectiveness of that functionality.

Each OMG-compliant secure or security ready implementation must therefore incl
in its documentation a conformance statement describing:

• The product’s supported security functionality levels and options, security
replaceability, and security interoperability, as described in Appendix C.

• The vendor’s assurance argument that demonstrates how effectively the produc
provides its specified security functionality and security policies.

• Constraints on the use of the product to ensure security conformance.

The vendor provides the conformance statement so that a potential product user c
make an informed decision on whether a product is appropriate for a particular
application. Ordinary descriptive documentation is not required as part of an OMG
compliant product. However, because the CORBA security specification provides a
general security framework rather than a single model, there are many different ki
of secure ORB implementations that conform to the framework. For example, som
systems may have greater flexibility and support customized security policies, whi
other systems may come with a single built-in policy. Some systems may strive fo
high level of security assurance, while others provide minimal assurance. The
conformance statement will help the user understand the security features provide
the product.
D-14 Security Service V1.5 May 2000



D

nes
ot
tion,
l
ith

ce
Some products will undergo an independent formal security evaluation (such as o
meeting the ITSEC or TCSEC). The OMG security conformance statement does n
take the place of a formal evaluation, but may refer to formal assurance documenta
if it exists. When formal evaluations are not required (often the case in commercia
systems), it is expected that the product’s security conformance statement along w
supporting product documentation will provide an adequate description of security
functionality and assurance.

D.8.2 Conformance Template Overview

The following template specifies the contents for CORBA security conformance
statements. Guidelines for using this template are provided in Section, Conforman
Guidelines.

CORBA Security Conformance Statement

<date>

<product identification>

<vendor identification>

1. Introduction

1.1 Summary of Security Conformance

1.2 Scope of Product

1.3 Security Overview

2. Security Conformance

2.1 Main Security Functionality Level

2.2 Security Functionality Options

2.3 Security Replaceability

2.4 Secure Interoperability

3. Assurance

3.1 Philosophy of Protection

3.2 Threats

3.3 Security Policies

3.4 Security Protection Mechanisms
Security Service V1.5 May 2000 D-15



D

e

f the

the

r
not
3.5 Environmental Support

3.6 Configuration Constraints

3.7 Security Policy Extensions

4. Supplemental Product Information

D.8.3 Conformance Guidelines

The guidelines in this section are intended to help the ORB implementor determin
which information belongs in each section of the conformance statement. The
statement will often be accompanied by product documentation to provide some o
information needed.

1. Introduction

1.1 Summary of Security Conformance

This section should give a summary of the security conformance provided by the
product. The summary is in the form of a table with boxes that are ticked to show
relevant conformance.

For the main security functionality level, one of the boxes must be selected (eithe
Level 1 or Level 2), though note that an ORB can be just Security Ready, so does
support either of the main security functionality levels. For security functionality
options, security replaceability, and secure interoperability, the appropriate boxes
should be selected.

Table 15-3 CORBA Security Functionality Checklist

Main Functionality
Functionality

Options Security Replaceability

Level 1 Level 2
Non

Repudiation
ORB

Services
Security
Services

Security
Ready

Table 15-4 CORBA Secure Interoperability Checklist

Interop IIOP DCE-

Level
SECIOP

SSL CIOPSPKM

Kerberos

CSI-ECMA

SPKM
1

SPKM
2

Privat
e

Public Hybri
d

Level 0

Level 1 XXXX XXXX XXX

Level 2 XXXX XXXX XXXXX XXX
D-16 Security Service V1.5 May 2000



D

are:

ting

lls
is

e

be

ity

ort
1.2 Scope of Product

This section should define what security components this product offers. Examples

• ORB plus all security services needed to support it plus other object services fit
with it and meeting the assurance criteria.

• Security-ready ORB.

• Security Services, which can be used with a security-ready ORB.

1.3 Security Overview

This section should give an overview of the product’s security features.

2. Security Conformance

2.1 Main Security Functionality Level

This section should define which main security functionality level this product
supports, Level 1 or Level 2.

This should also include any qualifications on that support. For example, any
interpretation of the CORBA security specification and how it is supported, any be
and whistles around the published interfaces, and any limitations on support for th
level.

As in the conformance level descriptions, the description should be divided into:

• The security functionality provided by the product

• The application developer’s interfaces

• The administrative interfaces

2.2 Security Functionality Options

This section should define which functionality options are provided, in particular th
support for non-repudiation.

For non-repudiation, as this is a published interface in this specification, it should
accompanied by a qualification statement if needed, as for the main security
functionality level.

2.3 Security Replaceability

This section should define whether the product supports replaceability of secur
services, ORB services, or neither.

This should also include any qualifications on that support. For example, any
interpretation of the CORBA security specification and how it is supported, any
bells and whistles around the published interfaces, and any limitations on supp
for this conformance option.

2.4 Secure Interoperability
Security Service V1.5 May 2000 D-17



D

the

As
BA

use it
o

trust

licy,

jects
This section should define whether the product supports SECIOP based secure
interoperability, DCE-CIOP based interoperability, SSL based interoperability, or
none. As with the previous sections, qualifications of the support, interpretations of
CORBA specification, and limitations should be included as needed.

2.5 Level of Interoperability

This section should specify what level of interoperability is supported by the ORB.
with the previous sections, qualifications of the support, interpretations of the COR
specification, and limitations should be included as needed.

2.6 Mechanism Profiles

This section should specify what mechanism and cryptographic profiles for
interoperability are supported by the ORB. As with the previous sections,
qualifications of the support, interpretations of the CORBA specification, and
limitations should be included as needed.

3. Assurance

If the product already has supporting assurance documentation (for example, beca
is being formally evaluated), much of this section may be satisfied by references t
such documentation. Appendix E, Guidelines for a Trustworthy System, provides
general discussions of many of the topics described here, particularly the basis of
needed for each of the architecture object models.

3.1 Philosophy of Protection

Overview of supported security policies, security mechanisms and supporting
mechanisms.

3.2 Threats

Description of specific threats intended to be addressed by the system security po
as well as those not addressed.

3.3 Security Policies

Description of any predefined policies, including

• Classes of entities (such as clients, objects) controlled by security policy

• Modes of access (conditions that allow active entities to access objects)

• Use of domains (policy, trust, technology)

• Requirements for authentication of principal, client and target objects

• Requirements for trusted path between principals, clients, ORBs, and target ob

• Delegation model

• Security of communications

• Accountability requirements (audit, non-repudiation)
D-18 Security Service V1.5 May 2000



D

ical

to

per-

re

sions

sed
• Environmental assumptions of the policy (e.g. classes of users, LAN/WAN, phys
protection)

3.4 Security Protection Mechanisms

• Rationale for approach

• Identification of components, which must function properly for security policies
be enforced

• Description of mechanisms used to enforce security policy

• How protection mechanisms are distributed in the architecture

• Why security mechanisms (such as access control) are always invoked and tam
proof

3.5 Environmental Support

• How the underlying environment (such as operating systems, generation tools,
hardware, network services, time services, security technology) are used in
providing assurance

• How installation tools ensure secure configuration

• How security management and administration maintains secure configuration

3.6 Configuration Constraints

Constraints to ensure that system security assurance is preserved, for example:

• Requirements on use and development of: clients, target objects, legacy softwa

• Limitations on interoperability

• Required software and hardware configuration

3.7 Security Policy Extensions

• Supported security policy extensions, if applicable

• Limitations of extensions

• Requirements imposed on developers to ensure trustworthiness of policy exten

• Supported interactions and compositions of security policies

4. Supplemental Product Information

Supplemental product information is included at the vendor’s discretion. It can be u
to describe, for example:

• Additional security features, not covered by the CORBA Security specification

• The impact of security mechanisms on existing applications
Security Service V1.5 May 2000 D-19



D

D-20 Security Service V1.5 May 2000



Guidelines foraTrustworthySystem E
as
ant

and
reats

rity

en to
an
ns
urity

ier in

ms
E.1 Introduction

This appendix provides some general guidelines for helping ORB implementors
produce a trustworthy system. The intention is to have all information related to
trustworthiness and assurance in this appendix, to explain how the specification h
taken into account the requirements for assurance, and also to show how conform
implementations can have different levels of assurance.

The remainder of the introduction first provides the rationale for including these
guidelines in the specification, and then gives some background on trustworthiness
assurance. Section E.2, “Protecting Against Threats,” on page E-3, describes the th
and countermeasures relevant to a CORBA security implementation. Section E.3
through E.6 provide the architecture and implementation guidelines for each secu
object model described in Section 2.2, “Security Architecture,” on page 2-28.

E.1.1 Purpose of Guidelines

The security standards proposed in this specification have been deliberately chos
allow flexibility in the security features, which can be provided. The specification c
support significantly different security policies and mechanisms for security functio
such as access control, audit and authentication. However, there is an overall sec
model which applies whatever the security policy. This is described in the earlier
sections of the document.

There is also flexibility in the level of security assurance, which can be provided,
conforming to this model and these standards. This appendix describes the
trustworthiness issues underlying the security model and interfaces described earl
the document, and provides implementation guidance on what components of the
architecture need to be trusted and why. Note that trust requirements assume
conformance to all of the security models, including the implementor’s view, as the
implementation affects trustworthiness. If a CORBA security implementation confor
to the security features replaceability level, but not the ORB services one, any
Security Service V1.5 May 2000 E-1



E

rise

s

ems
t
ents

utual

that
ans

,

ds.

osed

a set

ce
s

asis
r

requirements on ORB services will apply to the ORB. Trustworthiness will also
depend on several other implementation choices, such as the particular security
technology used.

E.1.2 Trustworthiness

Before an enterprise places valuable business assets within an IT system, enterp
management must decide whether the assets will be adequately protected by the
system. Management must be convinced that the particular system configuration i
sufficiently trustworthyto meet the security needs of the enterprise environment.
Security trustworthiness is thus the ability of a system to protect resources from
exposure to misuse through malicious or inadvertent means.

The basis for trust in distributed systems differs from host-centric stand-alone syst
largely for two reasons. First, the assignment of trust in a distributed system is no
isolated to a single global system mechanism. Second, the degree of trust in elem
of distributed systems (particularly distributedobjectsystems) may change
dynamically over time, whereas in host-centric systems trustworthiness is typically
static. In many cases, trust in distributed systems must be seen in the context of m
suspicion.

E.1.3 Assurance

Assuranceis a qualitative measure of trustworthiness; assurance is the confidence
a system meets enterprise security needs. The qualitative nature of assurance me
that enterprises may have different assurance guidelines for an equivalent level of
confidence in security. Some organizations may need extensive evaluation criteria
while other organizations need very little evidence of trustworthiness.

It is necessary to set a context by which CORBA developers and end-users of the
CORBA Security specification may evaluate the level of security to meet their nee
A single overall trust model that underlies the security reference model and
architecture (as described elsewhere in this specification) can set this context for cl
systems, but it is unlikely that a single trust model exists for the diversity of open
distributed systems likely to populate the distributed object technology world.

To support a balanced approach, assurance arguments should be assembled from
of system building blocks. Concepts of system composition and integration should
allow the assurance analysis to be tailored to specific user requirements. Assuran
evidence should be carefully packaged to best support enterprise decision-maker
during the security trade-off process.

The security object models defined by the CORBA Security specification are the b
for the necessary building blocks. The trust guidelines described in “Guidelines fo
Structural Model” on page E-8, provide constraints on how these components may
relate.
E-2 Security Service V1.5 May 2000



E

erall
e use

tem.
er

ate
s, so

the
st

is

fic
he
ut
e.

.1,

are
me
oals

y

The relationship between assurance and security provides the foundation for the ov
security model. The key characteristic is balance. Balanced assurance promotes th
of assurance arguments and evidence appropriate to the level of risk in the system
components.

Basic system building blocks, such as those in the CORBA Security specification
previously noted, are critical to developing balanced assurance. For example,
confidentiality is of most importance to a classified intelligence or military system,
whereas data integrity may be of more importance in a computer patient record sys
The former relies on assurance in the underlying operating system, where the latt
focuses security in application software.

E.2 Protecting Against Threats

An enterprise needs to protect its assets against perceived threats using appropri
security measures. This document addresses security in distributed object system
focuses on the threats to assets, software, and data, in such systems.

An enterprise may want to assess the risk of a security breach occurring, against
damage which will be done if it does occur. The enterprise can then decide the be
trade-off between the cost of providing protection from such threats and any
performance degradation this causes, against the probability of loss of assets. Th
specification allows options in how security is provided to counter the threats.
However, it is expected that many enterprises will not undertake a formal risk
assessment, but rely on a standard level of protection for most of their assets, as
identified by industry or government criteria. This section describes CORBA-speci
security goals, the main distributed system threats, and protection against them. T
discussion does not emphasize generic issues of threats and countermeasures, b
instead concentrates on issues that are unique to the CORBA security architectur

E.2.1 Goals of CORBA Security

The overall goals of the CORBA security architecture were described in Section 1
“Introduction to Security,” on page 1-2. CORBA security is based on the four
fundamental objectives of any secure system:

• Maintain confidentiality of data and/or system resources.

• Preserve data and/or system integrity.

• Maintain accountability.

• Assure data/system availability.

Many of the goals described in Section 1.1, “Introduction to Security,” on page 1-2
relevant to any IT system that is targeted at large-scale applications. However, so
security goals described are specific to the CORBA security architecture. These g
deserve special attention because they surface potential threats that may not be
encountered in typical architectures. CORBA-specific security goals include:

• Providing security across a heterogeneous system where different vendors ma
supply different ORBs.
Security Service V1.5 May 2000 E-3



E

o
ity

ng
ity,”

.

ed

r

he

in
y
r new
• Providing purely object-oriented security interfaces.

• Using encapsulation to promote system integrity and to hide the complexity of
security mechanisms under simple interfaces.

• Allowing polymorphic implementations of objects based on different underlying
mechanisms.

• Ensuring object invocations are protected as required by the security policy.

• Ensuring that the required access control and auditing is performed on object
invocation.

The discussion of the architecture and implementation guidelines in Section E.3,
“Guidelines for Structural Model,” on page E-8, addresses the mechanisms used t
ensure these CORBA-specific security goals, as well as many other generic secur
issues.

E.2.2 Threats

The CORBA security model needs to take into account all potential threats to a
distributed object system. It must be possible to set a security policy and choose
security services and mechanisms that can protect against the threats to the level
required by a particular enterprise.

A security threat is a potential system misuse that could lead to a failure in achievi
the system security goals previously described. Section 1.1, “Introduction to Secur
on page 1-2, provided an overview of security threats in a distributed object system
These threats and related attacks include:

• Information compromise - the deliberate or accidental disclosure of confidential
data (e.g., masquerading, spoofing, eavesdropping).

• Integrity violations - the malicious or inadvertent modification or destruction of
data or system resources (e.g., trapdoor, virus).

• Denial of service- the curtailment or removal of system resources from authoriz
users (e.g., network flooding).

• Repudiation of some action- failure to verify the actual identity of an authorized
user and to provide a method for recording the fact (e.g., audit modification).

• Malicious or inadvertent misuse- active or passive bypassing of controls by eithe
authorized or unauthorized users (e.g., browsing, inference, harassment).

The threats described above give rise to a wide variety of attacks. Most if not all t
threats that pertain to host-centric systems are pertinent to distributed systems.
Furthermore, it appears likely that the wide distribution of resources and mediation
truly distributed systems will not only exacerbate the strain on host-centric securit
services and mechanisms in use today on client/server systems, but also engende
forms of threat.
E-4 Security Service V1.5 May 2000



E

is
tion
be

is

ion.

f the

m

uld
trols

n

t user
a
act

ing

ey

get
and it
lse
Threats may be of different strengths. For example, accidental misuse of a system
easier to protect against than malicious attacks by a skilled hacker. This specifica
does not attempt to counter all threats to a distributed system. Those that should
countered by measures outside the scope of this specification include:

• Denial of service, which may be caused by flooding the communications with
traffic. It is assumed that the underlying communications software deals with th
threat.

• Traffic analysis.

• Inclusion of rogue code in the system, which gives access to sensitive informat
(This affects the build and change control process.)

E.2.3 Vulnerabilities of Distributed Object-Oriented Systems

Vulnerabilitiesare system weaknesses that leave the system open to one or more o
threats previously described. Information systems are subject to a wide range of
vulnerabilities, a number of which are compounded in distributed systems. These
vulnerabilities often result from deliberate or unintentional trade-offs made in syste
design and implementation, usually to achieve other more desirable goals such as
increased performance or additional functionality.

Classes of vulnerabilities include:

• An authorized user of the system gaining access to some information which sho
be hidden from that user, but has not been properly protected (e.g., access con
have not been properly set up or the store occupied by one object has not bee
cleared out when another reuses the space).

• A user masquerading as someone else, and so obtaining access to whatever tha
is authorized to do, resulting in actions being attributed to the wrong person. In
distributed system, a user may delegate his rights to other objects, so they can
on his behalf. This adds the threat of rights being delegated too widely, again,
causing a threat of unauthorized access.

• Controls that enforce security being bypassed.

• Eavesdropping on a communication line giving access to confidential data.

• Tampering with communication between objects: modifying, inserting, and delet
items.

• Lack of accountability due, for example, to inadequate identification of users.

System data as well as business data must be protected. For example:

• If a principal’s credentials are successfully obtained by an unauthorized user, th
could be used to masquerade as that principal.

• If the security sensitive information in the security context between client and tar
object is available to an unauthorized user, confidential messages can be read,
may be possible to modify and resend integrity-protected messages or send fa
messages without this being detected.
Security Service V1.5 May 2000 E-5



E

stics

s

n a

y.

ll

ntial
g a

ity
s

e
rity

ain
e a

l.
is

use
e

of
t

As described earlier, system threats and vulnerabilities are compounded by the
complexities of distributed object-based systems. Some of the inherent characteri
of distributed object systems that make them particularly vulnerable include:

• Dynamic Systems-- Distributed object systems are always changing. New
components are constantly being added, deleted, and modified. Security policie
also may be dynamically modified as enterprises change. Dynamic systems are
inherently complex, and thus security may be difficult to ensure. For example, i
large distributed object system it will be difficult to update a security policy
atomically. While an administrator installs a new policy on some parts of the
system, other parts of the system still may be using the old version of the polic
These potential inconsistencies in policy enforcement could lead to a security
failure.

• Mutual Suspicion -- In a large distributed system, some system components wi
not trust others. Mistrust could occur at many layers within the architecture:
principals, objects, administrators, ORBs, and operating systems may all have
varying degrees of trustworthiness. In this environment, there is always the pote
to inadvertently place unjustified trust in some system component, thus exposin
vulnerability. Although there are many mechanisms (e.g., cryptographic
authentication) to ensure the identity of a remote component, the system secur
architecture must be carefully structured to ensure that these checks are alway
performed.

• Multiple Policy Domains -- Distributed object systems that interconnect many
enterprises are likely to require many different security policy domains, each on
enforcing the security requirements of its organization. There is no single secu
policy and enforcement mechanism that is appropriate for all businesses. As a
result, security policies must be able to address interactions across policy dom
boundaries. Defining the appropriate policies to enforce across domains may b
difficult job. Mismatched policies could lead to vulnerabilities.

• Layering of Security Mechanisms-- Distributed object systems are highly
layered, and the security mechanisms for those systems will be layered as wel
Complex, potentially nondeterministic interactions at the boundary of the layers
another area for vulnerabilities to occur. A hardware error, for example, could ca
security checking code in the ORB to be bypassed, thus violating the policy. Th
complexity of the layering is further compounded in systems where security
enforcement is widely distributed; that is, there is no clear security perimeter
containing only a small amount of simple functionality.

• Complex Administration -- Finally, large geographically distributed object
systems may be difficult to administer. Security administration requires the
cooperation of all the administrators, who even may be mutually suspicious. All
the issues listed above lead to complex, error-prone administration. An innocen
change to a principal’s access rights, for example, could expose a serious
vulnerability.
E-6 Security Service V1.5 May 2000



E

n is
l of
and

odels

t
et

are

sit
play,

CB,
rity

le

on
es.
ess

to
ic
E.2.4 Countermeasures

Some threats are common across most distributed secure systems, so should be
countered by standard security features of any OMA-compliant secure systems.
However, the level of protection against these threats may vary. Complete protectio
almost impossible to achieve. Most enterprises will want a balance between a leve
protection against threats which are important to them, and the cost in performance
use of other resources of providing that level of protection.

A number of measures exist for countering or mitigating the effects of the above
threats/attacks. Countering these threats requires the use of the security object m
described in this specification. Relevant features of the object models include the
following:

• Authentication of principals proves who they are, so it is possible to check wha
they should be able to do. This check can be performed at both client and targ
object, as the client principal’s credentials can be passed to the server.

• Authentication between clients and target objects allows them to check that they
communicating with the right entities.

• Security associations can protect the integrity of the security information in tran
between client and target object (e.g., credentials, keys) to prevent theft and re
and keep the keys used for protecting business data confidential.

• Business data can be integrity-protected in transit so any tampering is detected
using the message protection ORB services. (This includes detecting extra or
missing messages, and messages out of sequence.)

• Unauthorized access to objects is protected using access controls.

• Misuse of the system can be detected using auditing.

• Segregating (groups of) applications from each other and security services from
applications can prevent unauthorized access between them.

• Bypassing of security controls is deterred by use of a Trusted Computing Base
(TCB), where security is automatically enforced during object invocation.

Assurance arguments and evidence are frequently founded on the concept of a T
which mediates security by segregating the security-relevant functions into a secu
kernel or reference monitor.

A traditional monolithic TCB approach is not suitable for the open, multiuser, multip
environment situations in which most CORBA users reside. In many cases, for
example, secure interoperability of CORBA applications and ORBs may be based
mutual suspicion. TCB scalability issues also argue against typical TCB approach
Given the complexity of distributed systems, it is not clear whether centralized acc
mediation is possible in the presence of distributed data and program logic.

Traditional TCB approaches also do not adequately address application security
requirements, particularly for many commercial applications. Applications common
the CORBA world such as general purpose DBMSs, financial accounting, electron
commerce, or horizontal common facilities will have many security requirements in
addition to those that can be enforced by a central underlying TCB.
Security Service V1.5 May 2000 E-7



E

is

ding
tive

s.

l

le
vice
and
Despite the limitations of the traditional TCB, we use the concept of adistributed TCB
in the assurance discussions of the next section. The concept of a distributed TCB
the collection of objects and mechanisms that must be trusted so that end-to-end
security between client and target object is maintained. However, note that depen
on the assurance requirements of a particular CORBA security architecture, sensi
data may still be handled by “entrusted” ORB code. Thus, our informal use of the
distributed TCB concept may not correspond to other existing models for network
TCBs, particularly for minimal assurance commercial CORBA security application

E.3 Guidelines for Structural Model

This section provides architecture and implementation guidelines for the structura
model of the CORBA security architecture described in Section 2.2, “Security
Architecture,” on page 2-28. The security functions provided in the model and the
basis for trust are described.

E.3.1 Security Functions

Figure E-1 outlines interactions during a normal use of the system. It gives a simp
case, where the application is unaware of security except for calling a security ser
such as audit. The security interactions include those seen by application objects
secure object system implementors.

Figure E-1 Normal System Interactions

This diagram is the basis for the discussions of security functions in each of the
security object models described next.

Client

ORB

Target
Object

Security

Services
ORB

Services

Clientnon-repud

Credentials

audit etc.

ORB
Security

user

.. object reference

CurrentObj RefCredentials

Application View

System
Implementor’s

View

security tokens

transformed request
E-8 Security Service V1.5 May 2000



E

ts the

will

.

tion
are.
re

curity

d on
lity
n of

he

er.

ed.

s.

ions
E.3.2 Basis of Trust

Enterprise management is responsible for setting the overall security policies and
ensuring system enforcement of the policies.

The system developer and systems integrators must provide a system that suppor
required level of assurance in the core security functionality. Generally application
developers cannot be expected to be aware of all the threats to which the system
be subject, and to put the right countermeasures in place.

Higher levels of security may require the code enforcing it to be formally evaluated
according to security criteria such as those of the US TCSEC or European ITSEC

Distributed Trusted Computing Base

The key security functionality in the system is enforced transparently to the applica
objects so that it can be provided for application objects, which are security unaw
This key functionality is contained in the distributed TCB of the system. It is therefo
responsible for ensuring that:

• Users cannot invoke objects unless they have been authenticated (unless the se
policy supports unauthenticated, guest access for some services).

• Security policies on access control, audit, and security association are enforce
object invocation. This includes policies for message protection, both confidentia
(ensuring confidential data cannot be read) and integrity (ensuring any corruptio
data in transit is detected).

• A principal’s credentials are automatically transferred on object invocation if
required, so the access control and other security policies can be enforced at t
server object.

• Application objects which do not trust each other cannot interfere with each oth

• The security policy between different security policy domains is suitably mediat

• The security mechanisms themselves cannot be tampered with.

• The security policy data cannot be changed except by authorized administrator

• The system cannot be put into an undefined or insecure state as a result of the
operation of nonprivileged code.

The distributed TCB also needs to provide the required information so that applicat
can enforce their own security policies in a way that is consistent with the domain
security policy.
Security Service V1.5 May 2000 E-9



E

he
licy.

ity

ty is
.

Figure E-2 Distributed TCB

The TCB in an OMA-compliant secure system is normally distributed and includes
components as follows.

• The distributed core ORBs and associated Object Adapters
Core ORBs are trusted to function correctly and call the ORB Security Services
correctly in the right order, but do not need to understand what these do.
Object Adapters are trusted to utilize the operating system facilities to provide t
required protection boundaries between components in line with the security po

• The associated ORB Services
ORB Services other than security are trusted similarly to the ORB. ORB Secur
Services are used to provide the required security on object invocation.

• Related objects
ORB Services use objects such as the binding and Current to find which securi
required.

• Security objects
Security objects include those available to applications such as Principal
Authentication and Credentials and those called by security interceptors (Vault,

Core ORBS and OAs

Binding

Application

Current

lower layer
communications

External Security Services

Operating System, Hardware

Security Objects
(Principal Authentication, Credentials, Security policies,

Vault, Security Context, Access Decision)

(Distributes) Trusted Computing Base

ORB
Services
E-10 Security Service V1.5 May 2000



E

the

rfere

lly

es.
.
en
se

of

cts

nd
tions
s are
tion
Security Context, Access Decision, and Security Audit). These are trusted to
function correctly to enforce security in line with the security policy and other
requirements.

• Any external security services used by the security services, as part of enforcing
security policy.

• The supporting operating systems.
These are trusted to ensure that objects (in different trust domains) cannot inte
with each other (using protection domains). The security services should also
ensure that the security information driving the security policy (such as the
credentials and security contexts) is adequately protected from the application
objects using such features.

• Optionally, lower layer communications software. However, this does not genera
need to be particularly secure (at least for normal commercial security) as
protection of data in transit is done by the security association and message
protection interceptors, which are independent of the underlying communication
software.

A distributed system may be split into domains, which have different security polici
These domains may include ORBs and ORB Services with different levels of trust
Trust between domains needs to be established, and an interdomain policy betwe
them enforced. The ORB security services (and external security services that the
call) to provide this interdomain working are part of the distributed TCB. Note,
therefore, that the parts of this TCB in different domains may have different levels
trust.

Note that application objects may enforce their own security polices, if these are
consistent with the policy of the security domain. However, failure to enforce these
securely will affect only the applications concerned and any other application obje
that trusted them to perform this function.

E.3.2.1 Protection Boundaries

The general approach is to establishprotection boundaries around groups of one or
more components, which are said to belong to a correspondingprotection domain.
Components belonging to a protection domain are assumed to trust each other, a
interactions between them need not be protected from each other, whereas interac
across boundaries may be subject to controls. Protection Boundaries and Domain
a lower level concept than Environment Domains; they are the fundamental protec
mechanism on which higher levels are built.

At a minimum, it must be possible to create protection boundaries between:

• Application components that do not trust each other.

• Components that support security services and other components.

• Components that support security services and each other.
Security Service V1.5 May 2000 E-11



E

(for

ng

ts

es

,
ce as)

evel

mple,

nents
E.3.2.2 Controlled Communications

As well as providing protection boundaries, it is necessary to provide a controlled
means of allowing particular components to interact across protection boundaries
example, an application invoking a Security Object (explicitly), or an interceptor
(implicitly).

It must not be possible for applications to bypass security services which enforce
security policies. It is therefore necessary to ensure that the components supporti
those services are always invoked when required. This is achieved by using both
protection boundaries and controlled communications to ensure that client reques
(and server responses) are routed via the components (interceptors and Security
Objects), which implement the security services.

Figure E-3 illustrates the segregation of components implementing security servic
into separate protection domains from application components; the only means of
communication between components is via controlled communication paths.

Figure E-3 Base Protection and Communications

In implementation terms, components could, for example, be executed in separate
processes, with process boundaries acting as protection boundaries. Alternatively
security services could be executed in-process with (i.e., in the same address spa
corresponding client and server application components, provided that they are
adequately protected from each other -- for example, by hardware-supported multil
access control mechanisms).

Figure E-4 shows two examples of protection boundaries. In the first example, the
boundaries between components might be process boundaries. In the second exa
ORB and security components might be protected from applications by memory
protection mechanisms (e.g., kernel and user spaces) and client and server compo
might be protected from each other by physical separation.

Client Server
Logical Object Request

Security Services

Base Protection and Communications
E-12 Security Service V1.5 May 2000



E

et
and

ce.

ity
d

t to
ed to
Figure E-4 Protection Boundaries

E.3.3 Construction Options

For some systems, the TCB in domains of the distributed system may need to me
security evaluation criteria for both functionality and assurance (in the correctness
effectiveness of the security functionality) as defined in TCSEC, ITSEC, or other
security evaluation criteria.

The split into components previously described allows a choice over the way the
system is constructed to meet different requirements for assurance and performan

This section describes three options for how the system may be constructed, as
follows:

• A commercial system where all applications are generated using trusted tools.

• A commercial system with limited security requirements.

• A higher security system.

Note –These are just examples to show the type of flexibility provided by the secur
model. It is not expected that any implementation will provide all the options implie
by these.

Example Using Trusted Generation Tools and ORBs

If all applications are generated using trusted tools, applications can be trusted no
interfere with other components in the same environment. Therefore there is no ne
provide protection boundaries between different application objects or between
application objects and the underlying ORB.

Hardware and Operating SystemHardware and Operating System

Client ClientServer ServerApplications

Security etc.

ORB
Security Service V1.5 May 2000 E-13



E

ide a

the

ss to
ts.

may

at
to

en
ices.

t of
the

can

as
tions

ity
of

s

ts,

sed.
ry (set
If the ORB and ORB Services are also trusted, there may need be no need to prov
protection boundary between the ORB and the underlying security services and
objects. It may well be acceptable to run them all in the same process, relying on
trust between the components, rather than more rigidly enforced boundaries.

However, if the application generation tools and the ORB are less trusted than the
security services, then there may need to be a protection boundary to prevent acce
security-sensitive information in the Credentials, Security Context, and Vault objec

Commercial System with Limited Security Requirements

Some systems may not contain very sensitive business information, so enterprises
not be prepared to pay for a high level of security. They may also know that the
probability of serious malicious attempts to break the system is low, and decide th
protecting against such attempts is not worth the cost. They may also choose not
sacrifice performance for better levels of security.

In many systems, applications are generated using tools that are not particularly
trusted. For example, using a C compiler, it would be possible to write an application
that can read, or even alter, any information within the same protection domain.
Theoretically, providing good security implies putting protection boundaries betwe
each application object, and between applications and the ORB and Security Serv

The security model allows environment domains to be defined, where enforcemen
policy can be achieved by means local to the environment. For example, objects in
same identity domain can share a security identity. Applications belonging to
environment domains may trust each other not to interfere with each other, and so
be put in the same protection domain.

It may also be acceptable to run (part of) the ORB in the same protection domain
the application objects. This assumes that an interface boundary between applica
and the ORB is sufficient protection from accidental damage (the probability of an
application corrupting an ORB being low in a commercial system). Even if the
application does corrupt the ORB, damage is limited, as the ORB does not handle
security-sensitive data.

In some commercial systems, it may also be acceptable to run some of the secur
services in the same protection domain as the application and ORB. The chance
these being accidentally (or maliciously) corrupted may be low, so it may be
acceptable to risk a failure to enforce the access control policy because the Acces
Decision object is corrupt.

However, it will often be desirable to protect the state information of security objec
which contain very sensitive security information from the applications.

Higher Security System

In a security system requiring high assurance, different security policies may be u
For example, label-based access controls may be used and these may be mandato
under administrator’s controls) and not changeable by application objects.
E-14 Security Service V1.5 May 2000



E

eys

m

tion
ide a
n

tors

vent
ity,

ir

fore

e

Stronger protection boundaries are also likely to be needed, allowing:

• Individual applications to be protected from each other. Even if environment
domains are used, the size of the domain is likely to be smaller.

• The ORB and ORB Services to be protected from the application.

• The core security objects, which contain security-sensitive information such as k
to be protected from applications and ORBs, etc.

• Particular secure objects (e.g., the Access Decision objects) to be separate fro
others, as they may have been written by someone less trusted than those who
wrote, for example, the Security Context objects.

E.3.4 Integrity of Identities (Trojan Horse Protection)

In traditional procedural systems, protecting the integrity of an identity is
straightforward; programs are stored in files, which are protected against modifica
by operating system access control mechanisms. When invoked, programs run ins
process whose address space is protected by operating system memory protectio
mechanisms. Programs load code in fairly predictable ways.

Since this specification does not mandate which entities have identities, implemen
have a wide variety of choices; identities may be associated, for example, with the
following:

• Object instances

• Servers

• Object adaptors

• Address spaces

If identities are associated with object instances, precautions are necessary to pre
object instance code from being modified by other code (which may have no ident
or a different identity) in the instance’s address space.

Servers may permit dynamic instantiations of previously unknown classes into the
address spaces. This makes it difficult to determine what code is running under an
identity if identities are associated with servers; this in turn makes it difficult to
determine whether a server identity can be “trusted.” Identified servers must there
be provided with some way of controlling what code can run under their identities.

Observing the following guidelines will help to ensure integrity of identities.

• Code running under one identity must not be permitted to modify code running
under another identity without passing an authorization check.

• It must be possible for an identified “entity” to control which code runs within th
scope of its identity.
Security Service V1.5 May 2000 E-15



E

n
rity

tes

ipal
ity

ject.

ices
tion
ies

e

of.
that
hey

l as
t

ntrol

bject,
. This
o

d

E.4 Guidelines for Application Interface Model

This section provides architecture and implementation guidelines for the applicatio
interface model of the CORBA security architecture described in Section 2.2, “Secu
Architecture,” on page 2-28. The security functions provided in the model and the
basis for trust are described.

E.4.1 Security Functions

E.4.1.1 Logging onto the System

When a user or other principal wants to use a secure object system, it authentica
itself and obtains credentials. These contain its certified identity and (optionally)
privilege attributes, and also controls where and when they can be used. This princ
information is integrity-protected and it should be possible to ascertain what secur
service certified them.

Walkthrough of Secure Object Invocation

The following is a walkthrough of what happens when a client invokes a target ob

• The client invokes the object using its object reference. The ORB Security Serv
are transparent to the client and application object and use the security informa
with the object reference and the security policy to decide on the security facilit
required. There are separate ORB Services for security associations, message
protection, and access control on object invocation, but the audit service can b
called by any or none of these according to security policy.

The client and target object establish the required level of trust in each other,
transmitting security tokens to each other to provide the required degree of pro
For example, they may or may not require mutual authentication. It is expected
most security mechanisms will provide options here, though the details of how t
do this, and the form of tokens used, is mechanism dependent.

The principal’s credentials are normally passed from client to target object
transparently. These should be protected in transit from theft and replay as wel
for integrity of the information itself (though some security mechanisms may no
support this). The Vault object will validate these, checking that it trusts who
certified them, as well as whether they are still intact.

Different ORB services may be called at the target end. For example, access co
is normally called at the server, rather than the client.

• Once the security association has been established between client and target o
the request can be passed using the message protection interceptor to protect it
should be able to provide integrity and/or confidentiality protection. It should als
be able to provide continuous authentication, as the messages will be protecte
using keys only known to this client and server (or the trust group for the target
object).
E-16 Security Service V1.5 May 2000



E

dit.
fy

y be
a
cts.

st in

o

alf,

urity

tion

iated

ntrol
l is
• The application object may also call security services for access control and au
These will use the security information available from the environment to identi
the initiating principal and its privileges.

• This application object may now act as a client, and call further objects. It may
delegate the client’s credentials or use its own (or use both). However, there ma
constraints on whether the client’s credentials can be delegated. For example,
particular principal’s credentials may be constrained to particular groups of obje

E.4.2 Basis of Trust

Users have some trust in application objects, and application objects have some tru
other objects. Both may:

• Trust application objects to perform the business functions.

• Have limited trust in some applications, or domains of the distributed system, s
restrict which of their privilege attributes are available to these objects.

• Want to restrict the extent that their credentials can be propagated at all.

• Have to prove their identity to the system so it can enforce access on their beh
unless they are only going to access publicly available services.

Both users and applications trust the underlying system to enforce the system sec
policy, and therefore protect their information from unauthorized access and
corruption.

E.5 Guidelines for Administration Model

This section provides architecture and implementation guidelines for the administra
model of the CORBA security architecture described in Section 2.2, “Security
Architecture,” on page 2-28. The security functions provided in the model and the
basis for trust are described.

E.5.1 Security Functions

Object and Object Reference Creation

When an object is created in a secure object system, the security attributes assoc
with it depend on the security policies associated with its domain and object type,
though the object may be permitted to change some of these. These attributes co
what security is enforced on object invocation (or example, whether access contro
needed and, if so, the Access Decision object to be used; the minimum quality of
protection required).

The object reference for a such an object is extended to include some security
information. For example, it may contain:
Security Service V1.5 May 2000 E-17



E

ct
o be
be

s

ific

ting.

lves,
e
, it

te

n.

in
• An extended identity. This includes the object identity as normal in an object
reference. However, it will also contain the identity of the trust domain, if the obje
belongs to one. Small objects, which are dynamically created and do not need t
protected from each other, will normally share a trust domain. There could also
a node identity.

• Security policy attributes required by the object when invoked by a client such a
the minimum quality of protection of data in transit.

• The security technology it supports. It may also contain some mechanism-spec
information such as its public key, if public key technology is being used, and
particular algorithms used.

Much of the information is just “hints” about which security is required, and will be
verified by the ORB services supporting the target object, so does not need protec

E.5.2 Basis of Trust

Authorization Policy Information

Domain objects may store policy information inside their own encapsulation
boundaries, or they may store it elsewhere (for example, authorization policy
information could be encapsulated in the state data of the protected objects themse
or it could be stored in a procedural Access Control Manager whose interfaces ar
accessible to Domain objects). Wherever authorization policy information is stored
must be protected against modification by unauthorized users.

Authorization policy information must be modifiable only by authorized
administrators.

Audit Policy Information and Audit Logs

Audit policy information is security sensitive and must be protected against
unauthorized modification. Audit logs are security sensitive and may contain priva
information; they should be viewed and changed only by authorized auditors.

• Audit policy information must be modifiable only by authorized audit
administrators.

• Audit logs must be protected against unauthorized examination and modificatio

E.6 Security Object Implementation Model

E.6.1 Guidelines

This section provides architecture and implementation guidelines for the security
object implementation model of the CORBA security architecture described in
Section 2.2, “Security Architecture,” on page 2-28. The security functions provided
the model and the basis for trust are described.
E-18 Security Service V1.5 May 2000



E

re
stem,
at it
ed to
me

und
lude
that

no

d

ith

gns

to
r
ons
ver,

n, the
E.6.2 Security Functions

The distributed core ORBs, object adapters, ORB security services, and security
objects provide the underlying implementation to support the application and
administration interfaces.

E.6.3 Basis of Trust

Target Object Identities

CORBA objects do not have unique identities; for this reason, when objects that a
not associated with a human user authenticate themselves in a secure CORBA sy
they use “security names.” Successful authentication to a target object indicates th
possesses the authentication data (perhaps a cryptographic key), which is presum
be known only to the legitimate owner of the security name. An object’s security na
may be included in references to that object as a “hint.” The question “how do
applications know that the security-name hint is reliable?” naturally arises.

The answer is as follows:

• If the EstablishTrustinTarget security feature is specified, then the security
services defined in this specification will authenticate the target security name fo
in the target object reference. The semantics of this authentication operation inc
an assumption that the security name in the reference corresponds to an identity
the user is willing to trust to provide the target object’s implementation. There is
way for the security services to test this assumption.

• If your implementation provides a trusted source of object references, then
everything will work properly. If you do not have a source of trusted object
references, the specification provides aget_security_namesoperation on the object
reference through which applications can retrieve the target’s security name an
perform any tests, which may help satisfy them of its validity.

CORBA object references can circulate very widely; for example, they can be
“stringified” and then (potentially) copied onto a piece of paper. Implementations w
very high integrity requirements could ensure that references are trustworthy by
providing a trustworthy service that generates references and cryptographically si
the contents, including the target security name.

Assumptions about Security Association Mechanisms

Implementation of a secure CORBA system requires use of security mechanisms
enforce the security with the required degree of protection against the threats. Fo
example, cryptographic keys are normally used in implementing security, for functi
such as authenticating users and protecting data in transit between objects. Howe
different security mechanisms may use different types of cryptographic technology
(e.g. secret or public key) and may use it in different ways when, for example,
protecting data in transit. These cryptographic keys have to be managed, and agai
way this is done is mechanism specific.
Security Service V1.5 May 2000 E-19



E

ge
t a

.2.4,
r of
.

hese

will

s

ing
s
ce

ing
A full analysis of how well an implementation counters the threats requires knowled
of the security mechanisms used. However, this specification does not dictate tha
particular mechanism is used.

It does assume that the security mechanisms used for authentication and security
associations can provide the relevant security countermeasures listed in Section E
“Countermeasures,” on page E-7. These are expected to be provided by a numbe
security mechanisms, which will be available for protecting secure object systems
Therefore, the analysis of threats and the trust model assume this facility level.

It would be possible to use a security mechanism that does not provide some of t
facilities (for example, mutual authentication, or even to switch this off to improve
performance in systems that can provide it). However, if such a system is used, it
be vulnerable to more threats.

Invoking Special Objects

Some of the objects described in this document arelocality constrained objects, which
bypass the normal invocation process and therefore are not subject to the security
enforced by the ORB services. TheCurrent object (used, for example, by the target
object to obtain security information about the client) is of this type. Protection of
these objects is provided by other means, for example, using protection boundarie
previously described.

E.6.4 Basis For ORB Assurance

The ORB must function correctly (e.g., when enforcing security policy on object
invocation and object creation as defined in this specification). Likewise the underly
host platforms must function correctly in their provision of the security mechanism
employed, and relied upon, by the ORB. Both must do this to the level of assuran
specified in its Conformance Statement (which is described in Appendix E). This
section identifies many of the most critical design considerations related to provid
these assurances in a DOC system.

Isolating Security Mechanisms

Figure E-5 depicts how security functionality and trust is distributed throughout the
architecture.
E-20 Security Service V1.5 May 2000



E

nt of

ords,

the

is
get
the

cts
fore
er,

l
trol

on
and
Figure E-5 Distribution of Security Functionality and Trust

The split of security objects is designed to reduce (as much as possible) the amou
security-sensitive information, which must be visible to applications and ORBs.

• Only log-in applications (where provided) need to handle secrets such as passw
and then only briefly during authentication.

• Cryptographic keys and other security-sensitive information about principals are
held with Credentials objects. References to Credentials objects are visible to
applications so they can invoke operations on them to, for example, reduce
privileges in the credentials before calling an object. However, no operations on
Credentials provide visibility of security information such as keys.

• Security information used to protect application data in transit between objects
held in Security Context objects, which are not visible to applications at all. (Tar
applications can ask for attributes associated with an incoming invocation using
Current object.)

Security objects such as Credentials, Security Context, and Access Decision obje
are also not used directly by the core ORB, only by the security interceptors. There
the core ORB needs to be trusted to call the interceptors correctly in the right ord
but does not need to understand security or have access to the security-sensitive
information in them.

The split also is intended to isolate components which may be replaced to change
security policy or security mechanisms. For example, to replace the access contro
policy, the Access Decision objects need to be changed. However, the access con
interceptor will remain responsible for finding and invoking the right Access Decisi
object. To replace the security mechanisms for security association, only the Vault
associated Security Context objects need to be replaced.

Application
may be security unaware

may enforce application security policy

core ORB and OA

must function correctly e.g.
invoke required interceptors

in the right order

ORB security interceptors

must function correctly
ensure security enforced

core security objects - must enforce security
Principal

Authentication

Credentials Vault Security
Context

Access
Decision

Audit
Non-

repudiation
Security Service V1.5 May 2000 E-21



E

nd
g

nt’s

ORB

ption

tem

n

g a
e

ed
nts

d to

ple,
e

Integrity of the ORB and Security Service Objects

Security in a CORBA environment depends on the correct operation of the ORB a
Security Services. In order for these mechanisms to operate correctly, the followin
rules must be followed:

• The ORB and Vault code must not be modifiable by unauthorized users or
processes.

• The ORB must protect all messages, according to policy, using the message
protection interfaces.

• The ORB must always check the client’s authorization before dispatching a clie
message to a protected object.

Safeguarding the Object Environment

To guard against unauthorized modification of the ORB and security services,
implementors should use Operating System protection mechanisms to isolate the
and Security Service objects from untrusted applications and user code.

Note that some modifications of ORB or Vault code may not compromise system
integrity. For example, in a CORBA implementation, which relies on third-party
authentication and does not share Vault or ORB objects between processes, corru
of the client-side Vault (or ORB) by user-written code may not compromise system
security. (This is because the client-side ORB and Vault in a third-party-based sys
may, depending upon the implementation, contain only information that the user is
entitled to know and change anyway. In this case, nothing the user can do to
information on his machine will enable him to deceive the third-party authenticatio
server about his identity and credentials.)

Safeguarding the Dispatching Mechanism

To ensure that the ORB always checks the client’s authorization before dispatchin
client’s message to a protected object, ORB implementors should follow one of th
following rules:

• Eliminate “direct dispatching” mechanisms (which permit clients to dispatch
messages directly to target objects without going through the ORB).

• Permit “direct dispatching” only after checking authorization and issuing “restrict
object references” to client objects. A “restricted object reference” is one that gra
access only to those methods of the target object, which the client is authorize
invoke.

Safeguarding Information in Shared Vault Objects

Vault objects encapsulate identity-specific, security-sensitive information (for exam
cryptographic keys associated with Security Context objects). If code owned by on
principal can penetrate a Vault object and examine or modify another principal’s
information, security can be compromised.
E-22 Security Service V1.5 May 2000



E

and
e

xts,

at
In an implementation that does not permit sharing of Vault objects by multiple
identities, this problem does not arise. However, if Vault objects are accessible to
encapsulate information about multiple identities, the following guidelines should b
observed:

• Do not permit a Vault object, which encapsulates one principal’s Security Conte
to exist in the same address space as code running under a different principal’s
identity.

• If a Vault object contains Security Contexts for two different principals, ensure th
no principal is able to obtain or use another principal’s Security Contexts.
Security Service V1.5 May 2000 E-23



E

E-24 Security Service V1.5 May 2000



FacilitiesNot InThisSpecification F
ct
ne

e
or

me

on,
t

) for
rity

ions
F.1 Introduction

Security in CORBA systems is a big subject, which affects many parts of the Obje
Management Architecture. It was therefore decided to phase the specification in li
with the priorities agreed as part of the security evaluation criteria by the Security
Working Group prior to the production of this specification.

This specification therefore includes the core security facilities and the security
architecture to allow further facilities to be added. Priority has been given to those
requirements most needed by commercial systems. Even with these limitations, th
size of the specification is larger than desirable for OMG members to review easily
for vendors to implement.

Some of the facilities omitted from this specification are agreed to be required in so
secure CORBA systems, and so are expected tobe added later, using the usual OMG
process of RFPs to request their specification.

This appendix lists those security facilities which are not included in the specificati
but left to later specifications, which may be in response to further RFPs for Objec
Services or Common Facilities.

F.2 Interoperability Limitations between Unlike Domains

Secure interoperability is included in this specification. This allows applications
running under different ORBs in different domains to interoperate providing that:

• Both support and can use the same security mechanisms (and algorithms, etc.
authentication and secure associations (an ORB may support a choice of secu
mechanisms).

• Use of these between the domains will not contravene any government regulat
on the use of cryptography.
Security Service V1.5 May 2000 F-1



F

ypes

a
ific

ow
tes.

y

ject

),”
ted.
e key
ge

e

ich
as
is

ient
• The security policies they support are consistent -- for example, use the same t
for privileges which can be understood in both places.

Limitations in the specification which affect this type of interoperability are:

• The standard policies defined do not include specifying different policies when
client communicates with different domains (though it is possible to define spec
policies to do this).

• There is no specification of the mapping policies required to translate attributes
when crossing a domain boundary where these policies are inconsistent, and h
these must be positioned, for example, to allow delegation of the mapped attribu
Again, such mapping policies are not prevented.

• In general, there is no specification of how federated policies are implemented.

• There is no specification of gateways to handle interoperability between securit
mechanisms. It is expected that only limited interoperability between particular
security mechanisms will ever be provided, so this is not expected to be the sub
of an RFP in the foreseeable future.

F.3 Non-Session-Oriented SECIOP Protocol

The SECIOP protocol defined in Section 3.2, “Secure Inter-ORB Protocol (SECIOP
on page 3-34, assumes that all underlying security mechanisms are session-orien
The current specification does not support security mechanisms, which encapsulat
distribution and other security context management information in a single messa
along with the data being protected (examples of such mechanisms include those
accessed through the proposed internet IDUP-GSS-API interface). Changes to th
SECIOP protocol would be required to support non-session-oriented protocols.

F.4 Mandatory Security Mechanisms

The current specification does not mandate any particular security mechanism wh
all secure ORBs must implement. This is because the submitters did not think it w
possible to specify out-of-the-box interoperability adequately in the timescale of th
submission.

F.5 Specific Security Policies

This specification includes some standard types of security policies for security
functionality such as access control, audit, and security of invocations. These are
aimed at general commercial users. Some enterprises may require other types of
policies, for example, support of mandatory access controls. Where there is a suffic
market for such policies, new policies may be defined, providing they fit with the
replaceability interfaces defined in this specification.
F-2 Security Service V1.5 May 2000



F

ing
the

t.

the
e

blic
t of
logy

.

can
e a

It
the
F.6 Other Audit Services

This specification only contains limited audit facilities, which allow audit records of
security relevant events to be collected. It does not include:

• Filtering of records after generation to further reduce the size of the audit trail.

• Routing audit records to a collection point for consolidation and analysis or rout
some as alarms to security administrators. (However, routing may be done using
OMG Event Service, if that is secure enough.)

• Audit reporting or analysis tools to use the audit trails to track down problems.

F.7 Possible Enhancements

F.7.1 SECIOP Mechanism and Option Negotiation

This specification assumes the mechanism identifiers in the IOR allow the client to
choose what mechanisms and options to use when communicating with this targe
Therefore, it does not define protocol exchanges to allow the client and target to
negotiate either mechanisms or options.

However, if the target supports a number of mechanisms and options, the size of
IOR could become larger than desirable. So in future, it may be desirable to defin
protocol exchanges for mechanism negotiation, for example, using [19].

F.7.2 Further Key Distribution Options

The current CSI-ECMA protocol defines secret and public key options for key
distribution and a hybrid option where secret keys are used within a domain, but pu
keys are used between domains. It does not define the protocol for use in the sor
hybrid system where the initiator uses secret key and target uses public key techno
and vice versa.

This may be needed for interoperation between unlike domains. If so, further
architectural options from ECMA 235 may need to be included in the specification

F.7.3 Further Delegation Options at/above Level 2

The current level 2 specification supports restricting where an initiator’s attributes
be used to targets identified by security name. Further options for restricting wher
PAC may be delegated could be added (e.g., to restrict delegation to particular
delegation policy domain). This would require definition of further “qualifier
attributes” in the CSI-ECMA protocol (see application trust groups in ECMA 235).
would also require administration of this, which would best be done by extending
security policy administration in Section 2.4, “Administrator’s Interfaces,” on
page 2-116.
Security Service V1.5 May 2000 F-3



F

e
s,

tes
ese
re a

R
they
ed
not

t
ith

s
e

t

om

r
cts.

d

s

Composite delegation of the initiator plus immediate invoker kind is described in th
CSI protocol, but is not mandatory at level 2. Further composite delegation option
including traced delegation, could be added.

F.8 Interoperability when using Non-Repudiation

The optional Non-repudiation service in the CORBA Security specification genera
NR tokens. This specification does not specify the technology used to generate th
tokens or a standard form for them. Interoperability of evidence tokens would requi
standard specification for such tokens.

This CSI specification is focused at inter-ORB interoperability, and therefore the IO
and SECIOP protocol. So it also does not specify the format of evidence tokens as
do not affect the SECIOP protocol. However, these evidence tokens may be pass
between ORBs as parameters, and will not be understood by an ORB which does
use the same security technology.

In future, a mandatory interoperability evidence token format should be defined, a
least for a limited number of types of evidence. This is expected to be compatible w
the public key mechanism specified in this document and use X.509 version 3
certificates.

F.9 Audit Trail Interoperability

The CORBA Security specification includes an Audit Channel interface which allow
applications and ORBs to write records to the audit trail. The way this Audit Servic
routes the audit records is not defined. This could be done using the OMG Event
Service or other means. Also, the stored/on-the-wire format of audit records is no
defined.

So there is no standard OMG defined method of bringing together audit records fr
different Audit Services.

F.10 Management

This specification contains only the management interfaces which are essential fo
security policy management. It specifies how to obtain and use security policy obje
However, it does not contain:

• Specification of facilities for handling domains, policies other than those require
for security policy administration.

• Specification of facilities for the management of some aspects of security. For
example, it does not specify how to create and install permanent keys, as this i
implementation specific.
F-4 Security Service V1.5 May 2000



F

from
se of
e
tion

lf of
a

al.

nce.

se

a

ked.
in
hain
to

ide

n

ked.
in
hain
F.11 Reference Restriction

This specification requires the movement of credentials to delegate access rights
one object to another. Another technique of access rights delegation restricts the u
an object reference according to a set of criteria. This approach, know as referenc
restriction, is under study by a number of vendors, but is not ready for standardiza
at this time. The criteria used to restrict references could include:

• Whether an object has the right to assert certain privileges, such as act on beha
a principal, act on behalf of a group of principals, act in a particular role, act with
particular clearance, etc.

• Whether the object reference has been limited to use within a given time interv

• Whether a particular method can be used by an object holding the object refere

Various techniques for restricting object references have been developed. Some u
cryptographic methods, while others store state in the object associated with the
restricted reference, allowing the object to decide if a method request meets the
restricted reference use criteria.

It is anticipated that vendors will explore this type of access rights delegation and
move towards the standardization of an interface supporting it in a submission to
future RFP.

F.12 Target Control of Message Protection

In the current specification, message protection can be specified by policy
administration at both the client and the target object.

Requesting an operation on an object may result in many other objects being invo
The CORBA security specification in this document allows an intermediate object
such a chain of objects to delegate received credentials to the next object in the c
(subject to policy). However, the current specification does not allow the application
control when and where these credentials are used. A later specification may prov
such controls to ride the default quality of protection selectively. Therefore, it could
cause some messages to have different qualities of protection during a security
association.

The target has no equivalent interface to request the quality of protection for a
particular response. There are cases where this could be useful.

A future security specification should consider adding control of quality of protectio
by the target for individual responses.

F.13 Advanced Delegation Features

Requesting an operation on an object may result in many other objects being invo
The CORBA security specification in this document allows an intermediate object
such a chain of objects to delegate received credentials to the next object in the c
(subject to policy).
Security Service V1.5 May 2000 F-5



F

nd

als

eriod.

s
e a

e

However, the current specification does not allow the application to control when a
where these credentials are used.

A later specification may provide such controls.

If so, it is expected that aset_controls operation on the Credentials object will be
added to enable the application to set the controls, and a matchingget_controls
operation to enable it to see what controls apply (see theset_privileges and
get_attributes operations defined in Interfaces under Section 2.3.4, “The Credenti
Object,” on page 2-78).

The set_controlsoperation would allow the application to specify a set of required
control values such as delegation mode (allowing for richer forms of delegation),
restrictions on where the credentials may be used and/or delegated, and validity p

Note: These operations were not included in the specification because of concern
about portability of applications using them. Current delegation implementations us
wide variety of delegation controls, and some use similar controls in semantically
different ways. Further implementation experience and investigation may make it
possible to define a portable, standard set.

F.14 Overlapping and Hierarchical Domains

This specification does not require support for overlapping or hierarchical security
policy domains. However, it is possible to implement both using the interfaces
provided.

Recall from Section 2.4, “Administrator’s Interfaces,” on page 2-116, that the
DomainAccessPolicy for each domain defines which rights aregrantedto subjects
when they attempt to access objects in the domain. In order to make an access
decision, the AccessDecision logic also needs to know which rights arerequired to
execute the operations of an object, which is a member of the relevant domain. Th
RequiredRights interface provides this information; the AccessDecision object will
probably use this interface in most implementations.
F-6 Security Service V1.5 May 2000



F

be
of

e

r of
ins’

,

A RequiredRights instance can be queried to determine which rights a user must
granted in order to be allowed to invoke an object’s operations. The intended use
DomainAccessPolicy andRequiredRights objects by theAccessDecision
object is illustrated next, in Figure F-1.

Figure F-1 Intended Use by AccessDecision

AccessDecision retrieves the relevant policy object by calling
get_domain_managers on the target object reference, and then calling
get_domain_policy(access) on the returned domain manager (assuming for
purposes of this example that there is only one). It then callsget_effective_rights on
the returned policy object.AccessDecision then callsget_required_rights on
RequiredRights and compares the returned list of required rights with the effectiv
rights. If all required rights have been granted, it grants the access.

Figure F-2 on page F-8 illustrates how the specification could be implemented to
support overlapping access policy domains (i.e., to allow an object to be a membe
more than one domain, such that each domain has an access policy and all doma
access policies are applied). In the diagram, theAccessDecision object must have
logic to combine the policies asserted by the variousAccessPolicy objects (which
may involve evaluating whichAccessPolicy object’s policy takes precedence over
the others). Note that theAccessDecision object knows the target object reference
because it is passed as an input parameter to theaccess_allowed operation.

AccessDecision

RequiredRights

access_allowed

DomainAccessPolicy

get_effective_rights get_required_rights
Security Service V1.5 May 2000 F-7



F

ote
Figure F-2 Supporting Overlapping Access Policy Domains

Hierarchical domains can be handled in a similar way as illustrated in Figure F-3 (n
that once again theAccessDecision object’s implementation is responsible for
reconciling the various retrieved policies).

.

Figure F-3 Hierarchical domains

AccessDecision

RequiredRights

access_allowed

get_required_rights

AccessPolicy

get_effective_rights

DomainManager

get_domain_policy(access)

Target

get_domain_managers

AccessDecision

RequiredRights

access_allowed

get_required_rights

AccessPolicy

get_effective_rights

DomainManager

get_domain_policy(access)

Target

get_domain_managers

DomainManagerAccessPolicy

get_superior_domain_managers
F-8 Security Service V1.5 May 2000



F

ssed
th

es

s

nd
ing
F.15 Capability-Based Access Control

Capability-based systems store access policy information in tokens, which are pa
from sender to receiver along with a message, rather than in tables associated wi
target objects or domains. In such systems, theDomainAccessPolicy object will
generally not be used in resolving target-side access control checks. Instead, a
CapabilityAccessPolicy object might be returned from a call to
Object::get_policy in a capability-based system. This object could retrieve the
granted rights from the capability (which will be associated with the requester’s
credentials), illustrated in Figure F-4.

Figure F-4 Retrieving Granted Rights

Note that neither the CapabilityAccessPolicy interfaces nor the Capability interfac
are defined in this specification (theget_granted_rights call to the capability in the
previous diagram is printed in italics, to indicate that no IDL is provided for it in thi
specification). The diagram assumes thatCapabilityAccessPolicy inherits the
get_effective_rights operation fromAccessPolicy .

F.16 Non-repudiation Services

This specification contains Non-repudiation Services for evidence handling. It is
anticipated that future service offerings could include data protection processing a
the specification of a delivery service. In addition, it is expected that policy process
interfaces will emerge to cover the broad range of non-repudiation policy coverage
within the service.

AccessDecision

RequiredRights

access_allowed

get_required_rights

CapabilityAccessPolicy

get_effective_rights

Capability

get_granted_rights
Security Service V1.5 May 2000 F-9



F

ing

and
rse

be
It is anticipated that the data protection and delivery service functions will be reach
a level of maturity within other standards domains (such as IETF and ISO SC27),
which should allow a richer definition of these services to be enabled in future
revisions of this specification.

The absence of these services in this specification means that application writers
manipulators will need to consult local implementation practice for the correct cou
of action to be taken when writing or porting their software.

This specification also does not include a standard format of evidence token for
interoperability. In the future, a token format based on public key certificates may
specified.
F-10 Security Service V1.5 May 2000



InteroperabilityGuidelines G
nes

t
d. Its

e

for
),

in
G.1 Introduction

This appendix includes:

• Guidelines for defining Security Mechanism TAGs in Interoperable Object
References (IORs).

• Examples of the secure inter-ORB protocol, SECIOP.

G.2 Guidelines for Mechanism TAG Definition in IORs

Section 3.1, “Security Interoperability Protocols,” on page 3-1, defined a prototype
TAG definition for security association mechanisms. This appendix provides guideli
that specifiers of mechanism TAGs (called authors here) should follow.

In addition to registering TAGs with the OMG, authors must lodge a document tha
explains how the mechanism (and its associated options) is mapped to this standar
document should:

• Identify the “security mechanism tagged component” being described. It may b
either:

• A new component TAG for the mechanism with a set of options it can have (
example, a separate TAG for each combination of mechanism and algorithm

or

• Use TAG_GENERIC_SEC_MECH and specify the mechanism OID (for use
the security_mechanism_type field) being described by this specification.

It may not be both.

• Specify the scope implied by the above mechanism identifier. This should not
exceed:

• Security association mechanism
Security Service V1.5 May 2000 G-1



G

g of

fined

fined

he

ion
a

and

rget.
d its

target

part
d
tifies
d
and
• Negotiation protocols

• Cryptographic algorithms

• Authentication method (e.g., public key)

• For the first example under the first bullet, describe the format, contents, and
encoding of thecomponent_data field for the TAG-specific components. For the
second example under the first bullet, describe the format, contents, and encodin
the data in themech_specific_data and components fields of the TAG specific
components. In each case, this may include:

• Allocating new component TAGs and describing the format, contents, and
encoding of their data.

• Specifying the use of these new tagged components, as well as other prede
tagged components within TAG-specific components.

• Specifying the use of these new tagged components, as well as other prede
tagged components that may or should appear at the top level of the
multicomponent profile.

• Describe a model that should be followed when defining future extensions or
variations using the same mechanism.

• The author must define either by reference to another document, or explicitly, t
format of the context tokens used by the mechanism in the SECIOP protocol.

G.3 SECIOP Examples

G.3.1 Mutual Authentication

In this example, the client wishes to authenticate the identity of the target (in addit
to the targets requirement to authenticate the client) before it is prepared to send
request to the target.

The client sends anEstablishContext message to the target containing the client’s
context id for the association, and the token required by the target to authenticate it
define the options chosen by the client for the association. The target verifies the
client’s token and generates the token required by the client to authenticate the ta
The target sends this token (along with the client’s context id for the association an
own) to the client in aCompleteEstablishContext message. When the client
receives this message, it authenticates the target using the token supplied by the
and establishes the peer id as part of the context.

Having completed the establishment of the context, the client sends the request as
of a MessageInContext message, which includes the target’s context identifier an
the integrity token for the message. When the target receives the message, it iden
the context by its identifier, checks the integrity of the message with the token, an
passes the message to GIOP. When the reply is returned, it is sealed for integrity
returned to the client in a SECIOPMessageInContext with the client identifier for
the context and the generated integrity token.
G-2 Security Service V1.5 May 2000



G

sion
the

uest
tifier

ct. It

to
irst
). It
ol
Figure G-1 Mutual Authentication

G.3.2 Confidential Message with Context Establishment

This example describes how context establishment is combined with the transmis
of a confidentiality protected message when the client does not wish to authenticate
target before passing it a message.

The client establishes its context object with identifier c_id_1. This identifier is
included with the token (token_1) in an EstablishContext message. The GIOP req
is transformed into the message seal (ms_1) and sent with the client’s context iden
in a MessageInContext .

When the target receives the message, it first processes theEstablishContext
message, authenticating the client and allowing the target to create its context obje
then unseals the message in ms_1 and passes it to GIOP.

When GIOP sends the reply, SECIOP adds aCompleteEstablishContext message
to theMessageInContext message, which protects the reply, to enable the target
return its context identifier to the client. When the client receives the message, it f
completes its view of the context (adding the targets id to the state for the context
can then unseal the reply from ms_2 and passes the reply message up the protoc
stack.

Client establishes
context object id = c_od_1
token = token_1 EstablishContext(c_id_1, token_1)

Target establishes
context objectid = c_id_69
token = token_2

CompleteEstablishContext(c_id_1, c_id_69, token_2)

Client completes context
and transmits signed GIOP
request with sign = ms_1

MessageInContext(peer, c_id_69, ms_1)(GIOP request)

Target checks sign and
processes request, signs
reply and transmits reply
with sign = ms_2

MessageInContext(peer, c_id_1, ms_2)(GIOP reply)

Client checks sign
and processes reply.
Security Service V1.5 May 2000 G-3



G

e

ith
quire

t then

ge, it

s its

e

Figure G-2 Confidential Message with Context Establishment

G.3.3 Fragmented GIOP Request with Context Establishment

In this example, the security context is established as part of the processing of a
fragmented GIOP request (note that the current GIOP protocol does not support
fragmentation, but this example indicates the independence of SECIOP from the
current GIOP protocol and explains how the SECIOP protocol would handle a
fragmented GIOP request). The sequence described reflects the requirement of th
target to authenticate the client’s privileges.

The client establishes its context object (with id c_id_1) and passes this identifier w
the authentication token in an EstablishContext message. As the client does not re
authenticating the target, this message is sent with aMessageInContext message
with the integrity sign (ms_1) and the GIOP fragment (as the message field of the
MessageInContext ).

When the target receives the messages, it authenticates the client using token_1. I
creates a context object with c_id_69, and then processes theMessageInContext ,
checking the integrity of the message using sign ms_1. Having checked the messa
passes the fragment up the protocol stack.

The client sends the final fragment as aMessageInContext with sign ms_2, but as
the target has not yet passed its identifier for the context to the client, the client use
own identifier for the context.

The target finds its context object from the client’s identifier (c_id_1) and checks th
integrity of the message. It then passes the final fragment up the protocol stack to
GIOP.

Client establishes context
object id = c_id_1
token id = token_1
Seals GIOP request into
seal = ms_1 Establish Context(c_id_1, token_1)

MessageInContext(client, c_id_1, ms_1)

Target establishes context
object id = c_id_69
Target unseals and
processes request, seals
reply and transmits
reply in
seal = ms_2

CompleteEstablishContext(c_id_1, c_id_69, nul)
MessageInContext(peer, c_id_1, ms_2)

Client unseals and
processes reply
G-4 Security Service V1.5 May 2000



Glossary
se.

s

ss
e
d

ess

d

em.

a
der

that
absolute time: Time relative to the time base of 0 hours 0 minutes 0 seconds of 15
October 1582 (c.f. CORBA Time Service [3]), accurate within a known margin of
error.

access control: The restriction of access to resources to prevent its unauthorized u

access control information(ACI): Information about the initiator of a resource acces
request, used to make an access control enforcement decision.

access control list: A list of entities, together with their access rights, which are
authorized to have access to a resource.

access decision function: The function which is evaluated in order to make an acce
control enforcement decision. The inputs to an access decision function include th
requester’s access control information (q.v.), the resource’s control information, an
context data.

ADO: Access Decision Object: The CORBA security object which implements acc
decision functions.

accountability: The property that ensures that the action of an entity may be trace
uniquely to the entity.

active threat: The threat of a deliberate unauthorized change to the state of a syst

adjudicator : An authority that resolves disputes among parties in accordance with
policy. In CORBA security, an adjudicator evaluates non-repudiation evidence in or
to resolve disputes.

anonymous user:A user of the system operating under a distinguished “public”
identity corresponding to no specific user.

assurance: 1. Justified confidence in the security of a system. 2. Development,
documentation, testing, procedural, and operational activities carried out to ensure
a system’s security services do in fact provide the claimed level of protection.
Security Service V1.5 May 2000 Glossary -1



: (i)
r

dit

o
).

ed

an

n.

lic

y
of

ity.

es
asymmetric key: One half of a key pair used in an asymmetric (“public-key”)
encryption system. Asymmetric encryption systems have two important properties
the key used for encryption is different from the one used for decryption (ii) neithe
key can feasibly be derived from the other.

audit: See security audit.

audit event: The data collected about a system event for inclusion in the system au
log.

audit trail : See security audit trail.

authentication: The verification of a claimant’s entitlement to use a claimed identity
and/or privilege set.

authentication information : Information used to establish a claimant’s entitlement t
a claimed identity (a common example of authentication information is a password

authorization: The granting of authority, which includes the granting of access bas
on access rights.

availabilit y: The property of being of being accessible and usable upon demand by
authorized user.

call chain: The series of client to target object calls required to complete an operatio
Used in this specification in conjunction with delegation.

certification authority : A party trusted to vouch for the binding between names or
identities and public keys. In some systems, certification authorities generate pub
keys.

ciphertext: The result of applying encryption to input data; encrypted text.

cleartext: Intelligible data; text which has not been encrypted or which has been
decrypted using the correct key. Also known as “plaintext”.

confidentiality : The property that information is not made available or disclosed to
unauthorized individuals, entities, or processes.

conformance level: A graduated sequence of defined sets of functionality defined b
the CORBA Security specification. An implementation must implement at least one
these defined sets of functionality in order to claim conformance to CORBA Secur

conformance option: A defined set of functionality which implementations may
optionally provide in order to claim CORBA Security conformant functionality over
and above the minimum required by the defined conformance levels.

conformance statement: A written document describing the conformance levels and
conformance options to which an implementation of the OMG CORBA Security
specification conforms.

control attributes : The set of characteristics which restrict when and where privileg
can be invoked or delegated.

counter-measures: Action taken in response to perceived threats.
Glossary -2 Security Service V1.5 May 2000



)

ve

yed

her

of

nit

set
icy

n

/

e

credentials: Information describing the security attributes (identity and/or privileges
of a user or other principal. Credentials are claimed through authentication or
delegation (q.v.) and used by access control (q.v.).

current object: An object representing the current execution context; CORBA
Security associates security state information, including the credentials of the acti
principal, with the current object.

DAC: Discretionary Access Control - an access control policy regime wherein the
creator of a resource is permitted to manage its access control policy information.

data integrity : The property that data has not been undetectably altered or destro
in an unauthorized manner or by unauthorized users.

DCE: Distributed Computing Environment (of OSF).

DCE CIOP:DCE Common Inter-ORB Protocol - the protocol specified in the OMG
CORBA 2.0/ Interoperability specification which uses the DCE RPC for
interoperability.

decipherment: Generation of cleartext from ciphertext by application of a
cryptographic algorithm with the correct key.

decryption: See decipherment.

delegation: The act whereby one user or principal authorizes another to use his (or
or its) identity or privileges, perhaps with restrictions.

denial of service: The prevention of authorized access to resources or the delaying
time-critical operations.

digital signature: Data appended to, or a cryptographic transformation of. a data u
that allows a recipient of the data unit to prove the source and integrity of the data
against forgery, e.g. by the recipient.

domain: A set of objects sharing a common characteristic or abiding by a common
of rules. CORBA Security defines several types of domains, including security pol
domains, security environment domains, and security technology domains.

domain manager: A CORBA Security object through whose interfaces the
characteristics of a security policy domain are administered.

encipherment: Generation of ciphertext from corresponding cleartext by applicatio
of a cryptographic algorithm and a key.

encryption: See encipherment.

ESIOP: Environment-Specific Inter-ORB Protocol (specified in the OMG CORBA 2.0
Interoperability specification).

evidence: Data generated by the CORBA Security Non-Repudiation service to prov
that a specific principal initiated a specific action.

evidence token: A data structure containing CORBA Security Non-Repudiation
evidence.
Security Service V1.5 May 2000 Glossary -3



t of
er.

d

by

y
ty

ng

s,

ot be

ly

of
of

ll

ly

B

r

BA
federated domains: Separate domains whose policy authorities have agreed to a se
shared policies governing access by users from one domain to resources in anoth

GSS-API: Generic Security Services- Application Programming Interface - specifie
by RFC 1508 issued by the Internet IETF. An update to this interface is near
completion as this is written, and it is anticipated that RFC 1508 will be superseded
a revised specification soon.

GIOP: General Inter-ORB Protocol (specified in the OMG CORBA 2.0/
Interoperability specification.)

group: A CORBA Security privilege attribute. Many users (and other principals) ma
be assigned the same group attribute; this allows administrators to simplify securi
administration by granting rights to groups rather than to individual principals.

granularity : The relative fineness or coarseness by which a mechanism may be
adjusted.

hierarchical domains: A set of domains together with a precedence hierarchy defini
the relationships among their policies.

identity : A security attribute with the property of uniqueness; no two principals’
identities may be identical. Principals may have several different kinds of identitie
each unique (for example, a principal may have both a unique audit identity and a
unique access identity). Other security attributes (e.g. groups, roles, etc...) need n
unique.

immediate invoker: In a delegated call chain, the client from which an object direct
receives a call.

impersonation: The act whereby one principal assumes the identity and privileges
another principal without restrictions and without any indication visible to recipients
the impersonator’s calls that delegation has taken place.

initiator : The first principal in a delegation “call chain”; the only participant in the ca
chain which is not the recipient of a call.

integrity : In security terms, the property that a system always faithfully and effective
enforces all of its stated security policies.

interceptor: An object which provides one or more specialized services, at the OR
invocation boundary, based upon the context of the object request,. The OMG
CORBAsecurity specification define the security interceptors.

intermediate: An object in a delegation “call chain” which is neither the initiator no
the ultimate (final) target.

IETF : Internet Engineering Task Force. Reviews an issues Internet standards.

IIOP : Internet Interoperable Object Protocol (specified in the OMG CORBA 2.0/
Interoperability specification).

IOR : Interoperable Object Reference - a data structure specified in the OMG COR
2.0/ Interoperability specification.
Glossary -4 Security Service V1.5 May 2000



).

cess
s of

s
ent

e

g

es

t
tion

ir
ITSEC: Information Technology Security Evaluation Criteria (of ECSC-EEC-EAEC
Harmonized Criteria.

MAC : Mandatory Access Control - an access control regime wherein resource ac
control policy information is always managed by a designated authority, regardles
who creates the resources.

locality constrained: an object is locality constrained if it cannot be accessed from
outside a specific locality. references to the object cannot be meaningfully passed
outside the boundaries of the locality of concern.

mechanism: A specific implementation of security services, using particular
algorithms, data structures, and protocols.

message protection: Security protection applied to a message to protect it against
unauthorized access or modification in transit between a client and a target.

mutual authentication: The process whereby each of two communicating principal
authenticates the other’s identity. Frequently this is a prerequisite for the establishm
of a secure association between a client and a target.

Non-Repudiation: The provision of evidence which will prevent a participant in an
action from convincingly denying his responsibility for the action.

ORB Core: The functionality provide by the CORBA Object Request Broker which
provides the basic representations of objects and the communication of requests.

ORB Services: Elements of functionality provided transparently to applications by th
CORBA Object Request Broker in response to the implicit context of an object
request.

ORB technology domain: A set of objects or entities that share a common ORB
implementation technology.

originator : The entity in an object request which creates the request.

passive threat: The threat of unauthorized disclosure of information without changin
the state of the system.

physical security: The measures used to provide physical protection of resources
against deliberate and accidental threats.

POSIX: Portable Open System Interfaces (for) UNIX - A set of standardized interfac
to UNIX systems specified by IEEE Standard 1003.

principal : A user or programmatic entity with the ability to use the resources of a
system.

privacy: 1. See confidentiality. 2. The right of individuals to control or influence wha
information related to them may be collected and stored and by whom that informa
may be disclosed.

private key: In a public-key (asymmetric) cryptosystem, the component of a key pa
which is not divulged by its owner.
Security Service V1.5 May 2000 Glossary -5



ss,

has

r

has

a

rom

ata

ir

.)

d

G

s
in
rights
privilege: A security attribute (q.v.) which need not have the property of uniquene
and which thus may be shared by many users and other principals. Examples of
privileges include groups, roles, and clearances.

proof of delivery: Non-repudiation evidence demonstrating that a message or data
been delivered.

proof of origin : Non-repudiation evidence identifying the originator of a message o
data.

proof of receipt: Non-repudiation evidence demonstrating that a message or data
been received by a particular party.

protection boundary: The domain boundary within which security services provide
known level of protection against threats.

PDU: Protocol Data Unit. The data fields of a protocol message, as distinguished f
the protocol header and trailer fields.

POA: Portable Object Adaptor

proof of submission: Non-repudiation evidence demonstrating that a message or d
has been submitted to a particular principal or service.

public key: In a public-key (asymmetric) cryptosystem, the component of a key pa
which is revealed.

public-key cryptosystem: An encryption system which uses an asymmetric-key (q.v
cryptographic algorithm.

QOP: Quality of Protection. The type and strength of protection provided by a
message-protection service.

RPC: Remote Procedure Call.

replaceability: The quality of an implementation which permits substitution of one
security service for another semantically similar service.

repudiation: Denial by one of the entities involved in an action of having participate
in all or part of the action.

RFP: Request for Proposal. An OMG procedure for soliciting technology from OM
members.

right : A named value conferring the ability to perform actions in a system. Acces
control policies grant rights to principals (on the basis of their security attributes);
order to make an access control decision, access decision functions compare the
granted to a principal against the rights required to perform an operation.

rights type: A defined set of rights.

role: A privilege attribute representing the position or function a user represents in
seeking security authentication. A given human being may play multiple roles and
therefore require multiple role privilege attributes.
Glossary -6 Security Service V1.5 May 2000



d

st

s in

s
icy,

s

e

r

a

RSA: An asymmetric encryption algorithm invented by Ron Rivest, Adi Shamir, an
Len Adelman.

seal: To encrypt data for the purpose of providing confidentiality protection.

secret-key cryptosystem: A cryptosystem which uses a symmetric-key (q.v.)
cryptographic algorithm.

secure time: A reliable Time service that has not been compromised, and whose
messages can be authenticated by their recipients.

security association: The shared security state information which permits secure
communication between two entities.

security attributes: Characteristics of a subject (user or principal) which form the
basis of the system’s policies governing that subject.

security audit: The facility of a secure system which records information about
security-relevant events in a tamper-resistant log. Often used to facilitate an
independent review and examination of system records and activities in order to te
for adequacy of system controls, to ensure compliance with established policy and
operational procedures, to detect breaches in security, and to recommend change
control, policy and procedures.

security features: Operational information which controls the security protection
applied to requests and responses in a CORBA Security conformant system.

security context: The CORBA Security object which encapsulates the shared state
information representing a security association.

security policy: The data which defines what protection a system’s security service
must provide. There are many kinds of security policy, including access control pol
audit policy, message protection policy, non-repudiation policy, etc.

security policy domain: A domain whose objects are all governed by the same
security policy. There are several types of security policy domain, including acces
control policy domains and audit policy domains.

security service: Code that implements a defined set of security functionality.
Security services include Access Control, Audit, Non-repudiation, and others.

security technology domain: A set of objects or entities whose security services ar
all implemented using the same technology.

subject: An active entity in the system; either a human user principal or a
programmatic principal.

symmetric key: The key used in a symmetric (“secret-key”) encryption system. In
such systems, the same key is used for encryption and decryption.

tagged profile: The data element in an IOR which provides the profile information fo
each protocol supported.

target: The final recipient in a delegation “call chain.” The only participant in such
call chain which is not the originator of a call.
Security Service V1.5 May 2000 Glossary -7



m is

tly

ld

nse

hem
target ACI : The Access Control Information for the target object.

target object: The recipient of a CORBA request message.

threat: A potential violation of security.

traced delegation: Delegation wherein information about the initiator and all
intervening intermediates is available to each recipient in the call chain, or to the
authorization subsystem controlling access to each recipient.

trust model: A description of which components of the system and which entities
outside the system must be trusted, and what they must be trusted for, if the syste
to remain secure.

trusted code: Code assumed to always perform some specified set of operations
correctly.

TCB: Trusted Computing Base. The portion of a system which must function correc
in order for the system to remain secure. A TCB should be tamper-proof and its
enforcement of policy should be noncircumventable. Ideally a system’s TCB shou
also be as small as possible, to facilitate analysis of its integrity.

TCSEC: Trusted Computer System Evaluation Criteria (a U.S. Department of Defe
Standard specifying requirements for secure systems).

unauthenticated principal: A user or other principal who has not authenticated any
identity or privilege.

UNO: Universal Networked Objects (an OMG Specification, now obsolete).

UTC: Coordinated Universal Time.

unsecure time: Time obtained from an unsecure time services.

UTO: Universal Time Object (c.f. CORBA Time Service [3]).

user: A human being using the system to issue requests to objects in order to get t
to perform functions in the system on his behalf.

user sponsor: The interactive user interface to the system which acts as the
authenticating authority (e.g. validating passwords) which validate the identity of a
user.

vault: The CORBA Security object which creates security context objects.

X/Open: X/Open Company Ltd., U.K.
Glossary -8 Security Service V1.5 May 2000


	Preface
	About This Document
	Object Management Group
	What is CORBA?
	X/Open

	Intended Audience
	Need for Object Services
	What Is an Object Service Specification?

	Associated OMG Documents
	Service Design Principles
	Build on CORBA Concepts
	Basic, Flexible Services
	Generic Services
	Allow Local and Remote Implementations
	Quality of Service is an Implementation Characteristic
	Objects Often Conspire in a Service
	Use of Callback Interfaces
	Assume No Global Identifier Spaces
	Finding a Service is Orthogonal to Using It

	Interface Style Consistency
	Use of Exceptions and Return Codes
	Explicit Versus Implicit Operations
	Use of Interface Inheritance

	Acknowledgments

	1.  Service Description
	1.1 Introduction to Security
	1.1.1 Why Security?
	1.1.2 What Is Security?
	1.1.3 Threats in a Distributed Object System
	1.1.4 Summary of Key Security Features
	1.1.5 Goals

	1.2 Introduction to the Specification
	1.2.1 Document Overview
	1.2.2 CORBA Security and Secure Interoperability Feature Packages
	1.2.3 Feature Packages and Modules


	2.  Interfaces
	2.1 Security Reference Model
	2.1.1 Definition of a Security Reference Model
	2.1.2 Principals and Their Security Attributes
	2.1.3 Secure Object Invocations
	2.1.4 Access Control Model
	2.1.5 Auditing
	2.1.6 Delegation
	2.1.7 Non-repudiation
	2.1.8 Domains
	2.1.9 Security Management and Administration
	2.1.10 Implementing the Model

	2.2 Security Architecture
	2.2.1 Different Users’ View of the Security Model
	2.2.2 Structural Model
	2.2.3 Security Technology
	2.2.4 Basic Protection and Communications
	2.2.5 Security Object Models

	2.3 Application Developer’s Interfaces
	2.3.1 Introduction
	2.3.2 Finding Security Features
	2.3.3 Authentication of Principals
	2.3.4 The Credentials Object
	2.3.5 The ReceivedCredentials Object
	2.3.6 Operations on Object Reference
	2.3.7 Security Operations on Current
	2.3.8 Security Audit
	2.3.9 Administering Security Policy
	2.3.10 Access Control
	2.3.11 Delegation Facilities
	2.3.12 Non-repudiation

	2.4 Administrator’s Interfaces
	2.4.1 Concepts
	2.4.2 Domain Management
	2.4.3 Security Policies Introduction
	2.4.4 Access Policies
	2.4.5 Audit Policies
	2.4.6 Secure Invocation and Delegation Policies
	2.4.7 Non-repudiation Policy Management

	2.5 Implementor’s Security Interfaces
	2.5.1 Security Interceptors
	2.5.2 Implementation-Level Security Object Interfaces
	2.5.3 Replaceable Security Services


	3.  Protocols and Mechanisms
	3.1 Security Interoperability Protocols
	3.1.1 Introduction
	3.1.2 Interoperability Model
	3.1.3 Protocol Enhancements
	3.1.4 CORBA Interoperable Object Reference with Security
	3.1.5 Common Secure Interoperability Levels
	3.1.6 Key Distribution Types
	3.1.7 Security Mechanisms Hosted on SECIOP
	3.1.8 Security Mechanisms Hosted Directly on IIOP
	3.1.9 Choices of Protocols, Cryptographic Profiles and Key Technologies
	3.1.10 Common Secure Interoperability Requirements
	3.1.11 Relation to CORBA Security Facilities and Interfaces
	3.1.12 Security Functionality
	3.1.13 Model for Use and Contents of Credentials
	3.1.14 CORBA Interfaces
	3.1.15 Support for CORBA Security Facilities and Extensibility
	3.1.16 Security Replaceability for ORB Security Implementors

	3.2 Secure Inter-ORB Protocol (SECIOP)
	3.2.1 Architectural Assumptions
	3.2.2 SECIOP Sequencing Layer
	3.2.3 SECIOP Context Management Layer
	3.2.4 SECIOP Context Management Finite State Machine Tables

	3.3 The SECIOP Hosted CSI Protocols
	3.3.1 IOR
	3.3.2 Mechanism Tags
	3.3.3 Association Options
	3.3.4 Cryptographic Profiles
	3.3.5 Security Name
	3.3.6 Security Administration Domains
	3.3.7 Mapping of Common Elements to the SECIOP Protocol
	3.3.8 CSI Protocols

	3.4 SPKM Protocol
	3.4.1 Cryptographic Profiles
	3.4.2 IOR Encoding
	3.4.3 Using SPKM for SECIOP

	3.5 GSS Kerberos Protocol
	3.5.1 Cryptographic Profiles
	3.5.2 Mandatory and Optional Cryptographic Profiles
	3.5.3 IOR Encoding
	3.5.4 SECIOP Tokens

	3.6 CSI-ECMA Protocol
	3.6.1 Concepts
	3.6.2 Security Attributes
	3.6.3 Target Access Enforcement Function
	3.6.4 Basic and Dialogue Keys
	3.6.5 Key Distribution Schemes
	3.6.6 Cryptographic Algorithms and Profiles
	3.6.7 PAC Protection and Delegation - Outline
	3.6.8 PPID Method
	3.6.9 PV/CV Delegation Method
	3.6.10 Mechanism Identifiers and IOR Encoding
	3.6.11 Security Names
	3.6.12 SECIOP Tokens When Using CSI-ECMA
	3.6.13 Initial Context Token
	3.6.14 TargetResultToken
	3.6.15 ErrorToken
	3.6.16 Per Message Tokens
	3.6.17 ContextDeleteToken
	3.6.18 Security Attributes
	3.6.19 Privilege and Miscellaneous Attribute Definitions
	3.6.20 Qualifier Attributes
	3.6.21 Target Names
	3.6.22 PAC Format
	3.6.23 Common Contents fields
	3.6.24 Specific Certificate Contents for PACs
	3.6.25 Check Value
	3.6.26 Basic Key Distribution
	3.6.27 Keying Information Syntax
	3.6.28 Summary of Key Distribution Schemes
	3.6.29 CSI-ECMA Secret Key Mechanism
	3.6.30 CSI-ECMA Hybrid Mechanism
	3.6.31 CSI-ECMA Public Mechanism
	3.6.32 Dialogue Key Block

	3.7 Integrating SSL with CORBA Security
	3.7.1 Introduction
	3.7.2 Cryptographic Profiles
	3.7.3 IOR Encoding
	3.7.4 Relation to SECIOP

	3.8 DCE-CIOP with Security
	3.8.1 Goals of Secure DCE-CIOP
	3.8.2 Secure DCE-CIOP Overview
	3.8.3 DCE RPC Security Services


	Appendix A - References
	Appendix B - Consolidated OMG IDL
	Appendix C - Relationship to Other Services
	Appendix D - Conformance Details and Statement
	Appendix E - Guidelines for a Trustworthy System
	Appendix F - Facilities Not In This Specification
	Appendix G - Interoperability Guidelines

