WARNING

THIS IS A DOCUMENT UNDER CONSTRUCTION. IT MAY NOT BE REFERENCED

AND MAY ONLY BE USED TO PERCEIVE AN IMPRESSION ABOUT THE WORK IN PROGRESS DESCRIBED IN THE DOCUMENT. THE CONTENT OF EACH PARAGRAPH OR SECTION HAS TO BE CONSIDERED AS NOT FINAL. THE CONTENT OF PARAGRAPHS AND SECTIONS ARE SUBJECT TO CONTINUOUS REVISION.

NEVERTHELESS, EVERYBODY IS FREE TO REFLECT ON THE CONTENT OF THE DOCUMENT.

QUESTIONS

· Input Use Case Authenticate User?

· Input Use Case Authorize User?

· Input Use Case Accounting?

· Comments on the Use Cases so far?

· What is the role of an ASM (Application Specific Module)?

· Does the CIM Core Policy Model supports policy variables?

http://www.dmtf.org/spec/Whitepapers/CIM_Policy24_wp.htm
· Might XML be a nice way to describe the content of a AAA request, or the content of policies?

· Content of AAA request?

· Definition of AAA response?

· Comments on the model?

· What about principles? OMG: ftp://ftp.omg.org/pub/docs/, and KeyNote: http://www.crypto.com/trustmgt/kn.html,

http://www.crypto.com/papers/rfc2704.txt (RFC 2704)

Generic model of a multi-domain environment

Introduction

In this document we will follow a top-down approach in describing a multi-domain environment consisting of a large number of Administrative Domains (ADs). Our first aim is to study the peer-to-peer communication between AAA servers of the ADs and come to a formal model for this communication. In a top-down approach one attempts to model by referring to general principles based on current knowledge. This in contrast to a bottom-up approach where one attempts to induce a model from details as might occur in practice and one later tries to see if an abstraction or generalization can be obtained. Applying the top-down approach one uses known details to see if the model so far developed covers them. Examples from known situations shall be used if they can be interpreted with respect to the model defined so far.

In a first approach to study the peer-to-peer communication between AAA servers in a multi-domain, the components displayed in fig. 1 suffice for a formal model of the communication. We view a multi-domain environment as a network of generic cooperating AAA servers. Each AAA server belongs to one Administrative Domain (AD) whereas each AD might have more than one AAA server. An AAA server may receive a request from an entity operating on the user's behalf. This request is noticed and forwarded to a so-called Policy Decision Point (PDP) for evaluation [PFWG]. Such a PDP can be viewed as an AAA server that manages a Policy Repository (PR) where a policy rule resides associated with the request. Each AD has at least one PDP. It is also possible that PDP has to deal with a policy that resides elsewhere, in a remote PR. Whether the request will be accepted or rejected, depends on the evaluation of the policy rule. Policy rules are a set of rules to administer, manage, and control access to network resources. Besides these rules, the PR also contains policy-related data and the conditions and actions associated with a rule. A policy action defines what to be done to enforce a policy rule when the conditions of the rule are met. The AAA server of the PDP resorts to an Interpreting Device to deal with the request. This Interpreting Device consults the PR and a variety of data sources and formulates a response. If the request is accepted the response has the form of a policy lease. This lease is passed to a Policy Enforcement Point, which ensures that the actions of the policy follow.

In general an AAA server has to communicate with other AAA servers for a full acceptance or rejection of the request. This occurs when the policy to be evaluated is a distributed policy. The study of the peer-to-peer communication between AAA servers also includes the question how to manage distributed policy rules.

Some AAA servers might be equipped with a User Database. For the users registered in the User Database, the AAA server functions as the server of their User Home Organization. Those servers will be involved in the authentication process for the users registered in their User Database.

More details about the properties and behavior of the components displayed if fig.1 are outlined below in the paragraph 'Use Cases and relationships'.

[image: image1.wmf]AAA

PR

AAA

PR

AAA

PR

AAA

PR

AD

User

DB

ASM

ASM

ASM

ASM

AD

AD

Figure 1 The abstract view of a multi-domain of Administrative Domains.
Object-oriented modeling and design

The Object-oriented (OO) modeling and design is performed in UML, Unified Modeling Language [http://www.omg.org/uml/]. Since UML is a language in progress we confine to the latest version of OMG (Object Management Group) UML 1.3 [http://cgi.omg.org/cgi-bin/doc?ad/99-06-09].

UML delivers a self-consistent set of diagrams, which provides a multiple perspective of the system under development. In this document we will refer ourselves to two diagrams: the Use Case diagram and the Sequence diagram. A Use Case diagram shows the relationship among Actors and Use Cases within a system. Herein an Actor is not part of the system but is considered to represent anyone or anything that must interact with the system. A Use Case is defined as a typical interaction that a user has with the system in order to achieve some goal, it represents the functionality of the system. The second diagram, the Sequence diagram, is in UML part of a Scenario, i.e. an instance of a Use Case. A Scenario diagram shows the object interactions arranged in time sequence. As is clear form the concise description of those diagrams, there exists an intimate relationship between those diagrams. The design of those diagrams along with their documentation is an iterative process.
Use Cases and relationships

In this paragraph we present the Use Cases necessary to develop a formal model of the peer-to-peer communication between AAA servers. We first consider a high-level Use Case diagram for a system of AAA servers. We define a single Actor as an entity that speaks the AAA protocol, the Actor called User in fig. 2. This generalized user wants a request for a service to be satisfied, the Use Case Satisfy request for service in fig. 2. The relationship between the Actor and this Use Case is a bi-directional association, it depicts the participation of the Actor in the Use Case. This association is bi-directional because the User expects an answer to his request or wants to negotiate about his request.

At the highest level we have:

· Use Case:

Satisfy request for service
· System:

Network of AAA servers
· Actors:

User
· Precondition:
None
In total we distinguish seven Use Cases:

· Satisfy request for service

· Lookup policy

· Evaluate policy

· Authenticate User

· Authorize User

· Enforce policy

· Accounting

There are several other relations among the Use Cases shown in fig. 2. These are include relationships and extend relationships. From the specification of UML 1.3 we quote the following definitions:

· An include relationship from Use Case A to Use Case B indicates that an instance of Use Case A will also contain the behavior as specified by B.

· An extend relationship from Use Case A to Use Case B indicates that an instance of Use Case B may be augmented by the behavior specified by A.

Between the Use Case Satisfy request for service and Lookup policy, as well as between Satisfy request for service and Evaluate policy, there exists an include relationship. The functionality described in Satisfy request for service always includes the functionality of Lookup policy and Evaluate policy. Those last two Use Cases are mandatory for Satisfy request for service.

The extend relationships are interpreted as conditional include relationships. The Use Cases Authenticate user and Authorize user are only performed if some internal condition in the Use Case Evaluate policy requires it.

Example

The Actor User is a generalized user, because it encompasses all entities speaking the AAA protocol. A living person will not directly apply the AAA protocol, so User also represents all Internet devices applying the AAA protocol on behalf of a real user. Some examples will clarify the interpretation of User. As a first example we consider a person who wants to wap (i.e. using WAP, the Wireless Application Protocol) with his mobile phone. In a General Wireless IP Architecture for Mobile-IP a Mobile Node, the mobile phone of the person with a desire to wap, appears in a Foreign Network. This Mobile Node issues a registration to the Foreign Agent of the network. On behalf of the Mobile Node the Foreign Agent sends an AAA request to its local AAA server. So the Actor User is the Foreign Agent, or may be seen as the combination of the Mobile Node and the Foreign Agent.

[image: image2.wmf]Lookup policy

Authenticate User

Accounting

Satisfy request for service

User

AAA request

Authorize User

<<

include>>

<<

include>>

<<

extend>>

<<

extend>>

<<

include>>

Evaluate policy

policy requires

authorization

policy requires

authentication

Enforce policy

<<

extend>>

Figure 2. Main Use Case diagram.
The Use Case Satisfy request for service.

This Use Case will describe how an AAA server deals with an AAA request issued by a device acting on the behalf of a real user, and what answers towards the user can be given. Every AAA request contains the address of an AAA server. It is the AAA server where the process to satisfy a request actually starts, it is the Policy Decision Point associated with the request. This AAA server may manage a Policy Repository where a policy rule resides that needs evaluation, the Policy Retrieval Point (PRP), but the PRP might be elsewhere. The request is forwarded to an Interpreting Device, which evaluates the policy and formulates a response. It is of importance that the requester is well informed about the outcome of his request, especially when his request is rejected. Poor information can trigger close-fisted reactions of the user, or may produce new requests having no chance on success. We will distinguish the following kind of responses towards the user concerning a rejected or accepted request:

1. If a request is rejected the user is informed about the reason why. If so be that different AAA servers are involved in the decision of a request, (error) messages from AAA servers down the decision chain have to be part of the answer towards the user. In case the user is offered the possibility to negotiate about the rejected request, the answer will provide him information for an adjusted request. For instance a user asked for a 3 hours connection, but the service can only deliver 2 hours.

2. In case a request is accepted one of the following four responses will be given:

· The user is asked to confirm the accepted request before the requested service will be delivered.

· The request is accepted but the user is asked to accept a condition before the service will be delivered.

· The service requested will be affected without further interference of the user. The user will be informed about the service activated.

· The user retrieves information necessary for a successful service request elsewhere (Push sequence). For example, the User receives a service agreement from his UHO.

We assume that the request issued indicates what kind of response is desired, for instance the request indicates that the user wants to negotiate about a rejected request.

When an AAA server of a PDP receives a request, it presents the request to the Interpreting Device, which has to lookup the policy for the request and starts evaluation of the policy (Use Cases Lookup policy and Evaluate policy). Three kinds of responses from the Interpreting Device are distinguished:

· Firstly, the response of the Interpreting Device can be interpreted as a suitable answer towards the user. It will be one of the answers listed above. The AAA server has to send the answer back to the user.

· Secondly, the Interpreting Device encountered a difficulty during the interpretation of the request and informs the user about it. The AAA server will forward this response towards the user.

· Thirdly, the Interpreting Device returns a distributed policy rule, a policy rule that cannot be solved locally. In that case the AAA server has to forward the different parts of this policy rule as new requests towards other AAA servers. The Interpreting Device also delivers the addresses of these AAA servers for the different parts of the policy. It is up to the AAA server to finish the decision process.

It is the responsibility of the AAA server to keep track of outstanding requests concerning the decision of a distributed policy. Therefore, an AAA server has to maintain a list of outstanding or forwarded requests, together with a time-out for each member of the list. This time-out value will be part of every request forwarded. Due to the time-out value, an AAA server down the decision chain may ignore further action if the time exceeds the time-out. If after the time-out value no answer for an outstanding request is received, the action of the AAA server is the following. The AAA server has to decide whether the distributed policy rule has become FALSE due to the timed-out request or that further requests are necessary or to wait for other related outstanding requests. If the distributed policy rule turned out to be FALSE, the AAA server has to inform the user.

As it is the responsibility of the AAA server to guide the decision of a distributed policy to its end, the following actions are performed:

· The AAA parses the distributed policy.

· It constructs the necessary requests to come to a decision. This also means that it decides whether multiple simultaneous requests will do, or multiple serial requests are more appropriate.

· When answers to outstanding requests drop in, the AAA server decides if the decision process of the distributed policy has come to an end. If the decision process has finished the AAA server has to compile an appropriate answer.

If the request for a service is satisfied the AAA server will construct a policy lease. All actions of the accepted policy are gathered in the lease. Depending on the request, the policy lease is send to the user for confirmation or directly send to a Policy Enforcement Point (PEP) where the policy actions are enforced (Use Case Enforce policy).

The Use Case Lookup policy.

The AAA server of a PDP forwards the user's request to its Interpreting Device. The Interpreting Device will interpret the request and retrieve the necessary policy rule(s) for evaluation. Policies can either be used in a stand-alone fashion or aggregated into policy groups [CIMCPM]. When a policy group is associated with a request this policy group may be an aggregation of policy rules or an aggregation of policy groups. It is the task of the Interpreting Device to retrieve all policy rules necessary. The logical relation among the policies in a policy group can be expressed as a policy rule too. For example, consider the following policy group with four policies, PG ={ p1, p2, p3, p4}. The logical relation for the policies of PG might be expressed like P = (p'1 (p'2) ((p'3 (p'4), wherein p'i is a placeholder for policy pi, '(' represents the logical AND-operator, and '(' the logical OR-operator. It even might be that a member of a policy group refers to a policy at another PRP. A policy rule, a logical expression of conditions, may have reusable conditions. These reusable conditions are stored separately, because they can be used in different policy rules. Lookup policy includes the lookup of reusable conditions. Policy rules in a policy group or conditions in a single policy rule can be prioritized. This means that there is a recommended order for evaluation.

A complex situation occurs when a request for a PDP may contain a policy rule, a policy pushed by the User. If this happens it must be clear what logical relation this policy has with the stored police(s), and whether this policy can trigger a policy conflict or contains conditions the User is not authorized to push.

The Use Case Evaluate policy.

This Use Case gives a look under the hood of the Interpreting Device when it starts to evaluate a policy rule. The request may contain values for variables occurring in the policy rule. The Interpreting Device will substitute these values at the proper place into the policy rule. After the Interpreting Device has substituted all it knows, it decides whether the rule is false, true or undecided yet. Substituting all it knows includes the consultation of local data sources, some policy conditions can only be decided by specialized processes. For those conditions the Interpreting Device resorts to an Application Specific Module (ASM). In the case of a true or false answer we say the policy is decided locally. A false answer is always accompanied with a message that informs the user about the reason why his request is rejected. In case the request indicated a desire to negotiate about a rejected policy, the user is informed about the status of the policy rule evaluated. If the rule is undecided yet, i.e. the policy rule cannot be decided locally, the Interpreting Device returns a policy rule that is the result of substituting all knowledge locally available into the referenced policy without making the rule false. The knowledge locally available comes from the policy-related data stored in the PR. The Interpreting Device returns this rule accompanied with one or more addresses of AAA servers to which the policy has to be forwarded as a whole or in parts. It is the responsibility of the AAA server to keep track of the decision process and combine the answers retrieved into an answer for the user.

Every request will result in at least two subsequent, separate processes, the lookup of the policy, and the evaluation of the policy. The authentication of the user and the authorization of the user are only performed if the policy requires it. It would be a violation of the privacy when authentication is performed in case the user requests for a public service.

Examples
In the examples below we will illustrate the Use Cases Lookup policy and Evaluate Policy. Firstly, we imagine a user that ordered a pizza via a web site of a pizza provider. The application, which took the order from the user, has to forward this request to the AAA server of the PDP. Therefore, it has to translate the user's request into a new request that suite the generic AAA protocol. We assume this request be of the form R=R0+R1+R2+R3, wherein:

R0 ("My name is James",

R1 ("I want a pizza Margarita",

R2 ("The maximum amount I want to spend is $12",

R3 ("I do not want to wait more than 1 hour",

with '(' having the meaning 'represents'.

The AAA server of the PDP presents R to its Interpreting Device. The Interpreting Device recognizes the request as coming from the pizza order application for which it has a policy rule P. Let the stand-alone policy P looks like:

P = (e1 (e2 (e3 (e4) ((e5 ((e5 (e6),

wherein: '(' the logical and, '(' the logical or, '(' the negation,

e1 ("user = identification",

e2 ("pizza = pizza_type",

e3 ("cost (max_cost",

e4 ("deliver_time (max_deliver_time",

e5 ("credit(e1) (cost",

e6 ("loan(e1) (cost" ; means user can establish a loan.

This policy rule is expressed as a Boolean expression of conditions. A condition may be an computed expression consisting of three elements: a variable, an operator and another variable or constant. As is clear from the example, the policy rule contains variables like, user, identification, pizza, pizza_type, cost, max_cost, deliver_-time, max_deliver_-time. The request may contain values for some of these variables, 'James' for identification, 'Margarita' for pizza_type, '$12' max_cost, and '1 hour' for max_deliver_time. Some variables depend on conditions like, credit(e1), and loan(e1). It is the responsibility of the Interpreting Device to substitute the values from the request for the corresponding variables in the policy rule. After the substitution the new policy P' reads:

P' = (e'1 (e'2 (e'3 (e'4) ((e5 ((e5 (e6),

wherein:

e'1 ("user = James",

e'2 ("pizza = Margarita",

e'3 ("cost < $12",

e'4 ("deliver time < 1 hour",

e5 ("credit(e'1) (cost",

e6 ("loan(e'1) (cost"

Next the Interpreting Device tries to decide all conditions of the policy. Therefore it consults a variety of local data sources and local resources. For instance, the condition e'1 requires an authentication process. The policy P is an example of a local policy rule, i.e. all conditions of the policy rule are stored locally.

Another situation occurs when the policy rule is a so-called distributed policy rule, i.e. at least one of the conditions refer to a remote policy rule, a policy rule at another PDP. Suppose only the pizza conditions to be local, then a distributed version of the above policy might look like:

P = e2 (e3 (e4 (p(e1 , cost)

wherein:

e1 ("user = identification",

e2 ("pizza = pizza_type",

e3 ("cost < max_cost",

e4 ("deliver_-time < max_deliver_time",

p(e1 , cost) refers to a remote policy at another PDP, and requires two arguments for the remote evaluation.

If all local conditions are met, the policy P' returned together with the address of the AAA server of the remote PDP might read:

P' = p(e'1 , cost)

wherein:

e'1 ("user = James",

cost follows from the decision of e3.

The Use Case Authenticate User.

The authentication of the User is the process to verify the proof of his identity. Authentication of the User is only performed if the policy under evaluation requires it. When it so be, the request contains information about necessary policy variables with respect to authentication. Furthermore, the request may contain a certificate or password, his proof of identity. In order to be sure the user is the one he says he is, his proof of identity needs to be verified. If authentication is required, the Interpreting Device resorts to an Application Specific Module (ASM). It is up to the ASM to initiate the authentication process and to inform the Interpreting Device.

The Use Case Authorize User.

Comparing the User's authenticated identity against the service requested for performs authorization of a User's request, i.e. whether the User is allowed to obtain the requested service or resource. The service or resources the User asks for are given by the actions of the policies evaluated. Like authentication, authorization is only performed if a policy rule or a condition of a policy needed requires it. The corresponding policy condition is forwarded to the ASM, which initiates the authorization process. Authorization requires authentication performed first.

The Use Case Enforce policy.

If the policy evaluated turns out to be true, the policy will be enforced at a PEP. The User might have given his consent to enforce the policy. The actions of the accepted policy refer to processes necessary to deliver the service requested for. These processes have to be started and provided with the proper information. Processes consume resources that are monitored by Resource Managers. Data about resources consumed must be available during and after service has been delivered. Therefore the PEP must create a data structure enabling to collect the data about the resources consumed. This data structure is called a session and is characterized by a sessionID. The sessionID distinguish the session from other sessions active.

The Use Case Accounting.

Accounting is the collection of all the data about resource consumption. Intermediate accounting or accounting indication informs the User about currently used resources. The session must provide the information about which Resource Managers need to be consulted. Resource Managers resorts to Meters that capture data about resource consumption in the network.

Policies

Introduction

As can be derived from the Use Case diagram the behavior of an AAA server is policy driven. In order to expand the Use Case Evaluate policy it is important to have a model for policies. In this section we will outline a model for the policies that can be used to describe some properties of the peer-to-peer communication between AAA servers. This model is presented in two stages. Firstly, we start with a simplified model wherein we view a policy as a Boolean expression in the mathematical sense. This means the Boolean variables do not have an inner structure. Secondly, in the advanced model, the Boolean variables in a policy rule are viewed as policy conditions. Properties derived from the simplified model also hold for the advanced model.

Simplified model

As is clear from the example in the previous section, a policy in its most abstract representation can be viewed as a Boolean formula like:

e1 e2 e3 e4 e5 (e1 e2 e3 e4 ē5 e6
wherein the binary and-operator ('(') is implicitly applied by the juxtaposition of two Boolean variables, and the unary not-operator ('(') is replaced by a bar above the variable

This Boolean formula is called to be written in disjunctive normal form (DNF), it is the disjunction (or) of terms. To be more specific it is in 6-DNF; we define k-DNF to be the set of Boolean formulae in disjunctive normal form where each term contains at most k literals (each variable ei is associated with two literals: ei itself and its negation ēi). Furthermore, we write k-DNF(n) to emphasize the set Ln={e1, ē1 , e2, ē2 ,…, en , ēn } from which the literals are drawn, n is the number of variables. Let us reinterpret a policy to be a Boolean formula from the set k-DNF(n).

Policy Repository
In its most simple implementation a PR can be considered as a lookup table. This lookup table contains a number of policy rules, and information for every literal in its policies. The information about a literal li says whether li is true or false, or which AAA server (PDP) may be able to answer the former question or the entry spawns a new policy. In the case the entry for the literal li is true or false, we say that li is a local literal. If the entry for li yields the address of another AAA we say that li is a remote literal. A remote literal is forwarded to another AAA server, where that literal is decidable or where it is forwarded again or spawns a new policy, depending on the corresponding entry in the PR at that AAA server.

Interpreting Device

When an AAA server of a PDP is confronted with a request the following strategy can be applied by its Interpreting Device to evaluate the corresponding policy P. After the parse procedure of the policy, all terms from the policy are determined. When all terms have the same priority one may start with the first term. If a literal is local and false the next term will be evaluated. If the literal is local and true the next literal in the term will be evaluated. In case this next literal is found to be a remote literal it is split off to a new term, which we will call the remote term, and every other remote literal of the term under evaluation will be added to this term. In this way the original term may yield a remote term (only remote literals). After the evaluation of the policy, the PR returns a true or false value or an adjusted policy P' containing remote terms exclusively. This policy P' is accompanied with a list of AAA servers where the remote literals may be decidable or where knowledge resides to forward the literal. It is the task of the AAA server to collect the true or false values for these remote literals and to come to a final decision.

Example

Suppose a policy P with three terms of the form e1ē2e4e7 (e1ē5 (e6ē8. Let e1 , e4 and ē8 be local literals, whereas ē2 , ē5 , e6 and e7 are remote literals. If e1 is true and ē2 is found to be a remote literal, ē2 is added to a new term, given the terms e4e7 and ē2. If then e4 is true and e7 is found to be a remote literal too, we end with one term, ē2e7. The second term of P, e1ē5 , will yield a remote term ē5. In case ē8 yields a false value, the last term becomes false and the remote literal it contains is not important for the policy. Thus the policy P' returned to the AAA server reads ē2e7 (ē5. The PR will also deliver the addresses of the AAA servers towards the literals ē2, ē5 and e7 have to be forwarded.

Distributed policies

Distributed policies are formulae from k-DNF(n) containing remote literals. To each remote literal a single address of an AAA server is attached where the literal may be decidable or where one knows how to direct that literal.

The topology

We are not interested in the underlying network connecting the AAA servers, but are only interested in the communication between AAA servers. In the simplest view of the network any AAA server may send a request to any other AAA server. This would mean that the topology of AAA servers as a fully connected graph G=(V, E). In practice the topology G of AAA servers will not be a fully connected graph, since there are specialized AAA servers only known to a limited number of other servers. A vertex will be assigned to each couple of an AAA server and its PR. An edge between two vertices u,v(V, represents the possibility that the AAA server at u and v can communicate with each other directly. How the information travels over the Internet is not of our concern. When an AAA server has to deal with a distributed policy, it has to communicate with other servers, which in their turn may have to communicate again. Any policy results in a graph G'=(V', E'), the decision graph of the policy, with E' consisting of all AAA servers necessary for the decision of the policy. This graph G' will be a sub-graph of the directed version of G
, with V'(V. A directed edge (vi, vj), vi ,vj (V', means that in the decision process of the policy the AAA server at vi sends a question to the server at vertex vj.

Additionally, the question arises whether the topology G is fixed, or may change during a simulation, a dynamic topology. At first stage we will keep the topology fixed. A choice for a dynamic topology becomes desirable when one wants to consider aspects like faulty AAA servers, and the introduction of additional AAA severs. This requires mechanisms to update the PRs.

Decision graph of a policy

As stated above to each distributed policy a decision graph is associated. This graph is a result from the PRs that play a role in the decision of the policy. In fig. 3 such a decision graph is depicted for a distributed policy at vertex A with remote literals ej, ej+1, …,ej+5. Of those literals ej and ej+1 are decidable at vertex B, ej+2 at C, ej+3 at D and ej+4 and ej+5 at vertex E. This graph is a result of the fact that in the PR of vertex A the entries ej and ej+1 yield the address of B, entries ej+2 ej+3 and ej+4 that of C, and entry ej+5 that of E. At C both ej+3 and ej+4 are forwarded to D and E, respectively.

Some remarks can be made about the decision graph of fig. 3. The first and most important notice is that this graph belongs to a distributed policy that is decidable, and that the graph is a directed acyclic graph (DAG). Therefore, vertex A is the only vertex with a zero in-degree, it has only outgoing edges, we will call this the root of the communication graph. Furthermore, the decision graph has the following properties. The remote literals at A are partitioned over the requests r along the outgoing edges of A. At a vertex with a zero out-degree (vertex B, D, or E) the literals of the requests along the incoming edges are decidable at that vertex. At those vertices with a non-zero in-degree and out-degree (vertex C), the literals of the requests along the incoming edges are partitioned over the vertex itself and the requests along the outgoing edges or are partitioned over the requests along the outgoing edges exclusively. In the last case the PR forwards all incoming requests.

[image: image3.wmf]A

E

C

D

B

}

,

{

1

+

j

j

e

e

}

{

3

+

j

e

}

,

{

5

4

+

+

j

j

e

e

(

)

4

3

2

,

+

+

+

j

j

j

e

e

e

r

(

)

3

+

j

e

r

(

)

5

+

j

e

r

(

)

1

,

+

j

j

e

e

r

(

)

4

+

j

e

r

}

{

2

+

j

e

Figure 3 A decision graph of a distributed, decidable policy.
Now we will give a definition of a decision graph for a distributed policy. Here we apply the following restrictions for the entry of a PR: it contains a true or false value or the address of an AAA server. Thus we do not allow that an entry can spawn a new policy rule evaluation.

Def. Suppose the network of AAA servers forms a graph G=(V, E). Let s(V to be the vertex representing a PDP where a policy rule P resides. Furthermore, let P contain a nonempty set R of remote literals. Then the decision graph of the distributed policy P is a subgraph G' of the directed version of G, G'=(V', E'), V'(V, such that the following properties hold. V' has at least two vertices, with s(V' and s has at least one outgoing edge. The requests along the outgoing edges of s are a partition of the set R of remote literals. Each other vertex of the graph has at least one incoming edge, and the literals of the requests along the incoming edges have each a nonempty entry at the PR. The requests along the outgoing edges are a partitioning of a nonempty subset of the literals of the requests along the incoming edges.
This definition allows a decision graph for an undecidable policy. If in fig. 3 vertex D forwards r(ej+3) to A again, the decision never stops.

A distributed policy at a vertex A is decidable if its decision graph is a directed acyclic graph (with vertex A as root). The last remark is placed between brackets because when the decision graph for the distributed policy at vertex A becomes acyclic, vertex A is automatically the root.

With the above definition of a decision graph for a distributed policy we can follow a constructive algorithm to generate distributed policies for a topology of AAA servers.

We assume that the answers to the remote literals follow the opposite route, i.e. in the decision graph the directed edges change direction. Thus, the answer to r(ej+4) , a(ej+4), travels form E via C back to A (see fig. 4).

[image: image4.wmf]A

E

C

D

B

(

)

3

+

j

e

a

(

)

5

+

j

e

a

(

)

(

)

1

,

+

j

j

e

a

e

a

(

)

4

+

j

e

a

(

)

(

)

)

(

,

,

4

1

2

+

+

+

j

j

j

e

a

e

a

e

a

Figure 4. The aggregation graph for the situation in fig. 3.

Another possibility of a decision graph might be constructed when an AAA server does not forward a literal, but returns the address found at the corresponding entry of its PR. It is then the task of the requester to issue a new request for the literal to that specific AAA server.

[image: image5.wmf]A

E

C

B

}

,

{

1

+

j

j

e

e

}

,

{

5

4

+

+

j

j

e

e

(

)

4

3

2

,

,

+

+

+

j

j

j

e

e

e

r

(

)

5

+

j

e

r

(

)

1

,

+

j

j

e

e

r

}

{

2

+

j

e

A

E

C

B

(

)

(

)

(

)

4

3

2

,

,

+

+

+

j

j

j

e

a

e

a

e

a

(

)

(

)

1

,

+

j

j

e

a

e

a

(

)

5

+

j

e

a

A

E

(

)

4

+

j

e

r

D

(

)

3

+

j

e

r

A

E

(

)

4

+

j

e

a

D

(

)

3

+

j

e

a

Figure 5. Decision and aggregation graphs with no forwarding of literals.

In fig. 5 the situation is depicted for the case without forwarding. The policy is the same as in the situation shown in fig. 3. The answers a(ej+3) and a(ej+4) can't be used to decide the policy, they contain the addresses of D and E, respectively. Therefore, A has to issue new requests for D about ej+3 and for E about ej+4. After receiving these answers a decision about the policy can be made. Note, that in this situation a cycle in the communication of a literal can be detected by the AAA server at vertex A, if it keeps track of all addresses involved for that literal. This way of deciding a distributed policy is possible if the AAA servers at B, C, D, and E are directly accessible by the server at A.

If the entry for a literal in a PR may contain a new policy the above situation changes.

[image: image6.wmf](

)

2

+

k

e

r

A

C

B

}

,

{

1

+

j

j

e

e

D

}

{

3

+

j

e

E

}

,

,

{

3

4

4

+

+

+

k

j

j

e

e

e

(

)

4

3

2

,

,

+

+

+

j

j

j

e

e

e

r

(

)

3

+

j

e

r

(

)

5

+

j

e

r

(

)

1

,

+

j

j

e

e

r

(

)

4

+

j

e

r

}

{

2

+

j

e

K

L

M

(

)

1

+

k

e

r

(

)

3

+

k

e

r

(

)

3

+

k

e

r

}

{

1

+

k

e

}

{

2

+

k

e

Figure 6. Decision graph with remote policy spawning.
Policy evaluation termination

If an entry for a literal may spawn a new policy two situations can be distinguished when the original policy gives rise to a chain of spawned policies. Firstly, more than one of the spawned policies reside at the same PR. Secondly, more than one of the spawned policies reside at different PDPs. In principal the evaluation of a policy may lead to an avalanche of policies and evaluation may go on forever. To guarantee termination of the second kind, the introduction of a maximal PDP count may be appropriate. In order to limit the number of policies spawned at the same PDP the Interpreting Device may keep track of this number and set a limit. Still this does not guarantee that policy evaluation terminates within a certain time span. A limit on the evaluation time suffices. The question is who is responsible for that limit. The most appropriate candidate to set this time limit is the User who issued the request. If the policy turns out to be a distributed policy the AAA server at the root of the decision tree inserts the termination time into any outgoing request. As soon as an AAA server down the decision chain discovers that the local time exceeds the termination time in the receiving request it ignores the request. There is no need to inform the AAA server up the decision chain about this ignorance. The AAA server at the root of the decision tree just informs the User about the failure of his request when answer to outstanding request failed to come in during the span set.

Inter-PDP communication

Evaluation of a distributed policy involves the communication among different PDPs. As long as the PDPs belong to the same Administrative Domain, the PDPs may consider each other as a Trusted Node. We assume that all AAA servers (PDPs) within the same Administrative Domain see each other as a Trusted Node. The situation differs when the communication between PDPs transverse the boundary of an Administrative Domain. Evaluation of a distributed policy involving PDPs belonging to different Administrative Domains requires a trust relationship between those PDPs whose communication crosses the boundary between two ADs.

[image: image7.wmf]A

E

C

D

B

}

,

{

1

+

j

j

e

e

}

{

3

+

j

e

}

,

{

5

4

+

+

j

j

e

e

(

)

4

3

2

,

+

+

+

j

j

j

e

e

e

r

(

)

3

+

j

e

r

(

)

5

+

j

e

r

(

)

1

,

+

j

j

e

e

r

(

)

4

+

j

e

r

}

{

2

+

j

e

Domain boundary

Figure 7 Decision graph with nodes in different Administrative Domains.

If fig. 7 node A has a request for node C in the same AD. Node A does not have the knowledge that node C will forward a part of the request to node D and E, both in another AD.

Advanced model
In its most general representation a policy is a Boolean expression of conditions. A condition may be a reference to a local policy, a reference to a policy at another PDP (remote policy), a computed expression, or a reference to a local condition. This definition accommodates policy groups. A policy with conditions representing references to other policies may be interpreted as a policy group. As a policy group is recursively defined, a referenced policy may as well be a reference to a policy. If a condition is a reference to a local condition, the condition referenced is interpreted as a reusable condition. So far we distinguished two kind of Boolean expressions. Firstly, an expression in DNF (Disjunctive Normal Form), a disjunction of terms, wherein each term consists of conditions, and secondly, an expression in CNF (Conjunctive Normal Form), a conjunction of clauses, wherein each clause consists of conditions. Here we will introduce a new concept called a decision list [RIVEST 87]. We first define a decision list with respect to the simple model.

Def. A decision list is a list L of pairs

(f1 , v1), (f2 , v2), . . . , (fr , vr)

where each fj is a term in Cnk (the set of all terms, conjunctions, of size at most k with literals drawn from Ln), each vi is a value in {0,1}, and the last function fr is the constant function true.
A decision list ca be think of as an extended "if - then - elseif - … - else - " rule. As proofed in [RIVEST 87], for 0<k<n, k-CNF(n) and k-DNF(n) are proper subsets of k-DL(n) (with k-DL(n) the set of all Boolean functions defined by decision lists, where each function in the list is a term of size at most k). We will generalize the concept of a decision list by substituting a condition for a literal, an action (reference) for a vi, and an error message for the last vr. For example, the following decision list

[image: image8.wmf](

)

(

)

(

)

(

)

ERROR

true

a

c

c

a

c

c

c

a

c

c

,

,

,

,

,

,

,

3

4

3

2

5

2

1

1

3

1

is represented in fig.8.

[image: image9.wmf]true

true

true

3

1

c

c

5

2

1

c

c

c

4

3

c

c

false

false

false

a

1

a

2

a

3

ERROR

In this concept actions are coupled to terms. Furthermore, the terms occur in the list according to their priority.

We will try to describe a policy in XML. Unlike HTML, XML uses tags to tell you what the data means, rather than how to display it. The Document Type Definition (DTD) of an XML document lets one specify the kinds of tags that can be included in the XML document. It also tells a validating parser which tags are valid, and in what arrangements. A DTD tells both validating and nonvalidating parsers where text is expected, which lets the parser determine whether the whitespace it sees is significant or ignorable.
In order to describe a distributed policy the following pairs of begin- and end-tags might be defined in a DTD document (a begin-tag and an end-tag mark each XML element):

· Policy-tags:

<policy> and </policy>,

· Pair-tags:

<pair> and </pair>,

· Condition-tags:

· <local_condition> and </local_condition>,

· <remote_condition> and </remote_condition>,

· <computed_condition> and </computed_condition>,

· Variable-tags:
<variable> and </variable>,

· Operator-tags:
<operator> and </operator>,

· Constant-tags:
<constant> and </constant>,

· Action-tags:
<action> and </action>,
· Error-tags

<error> and </error>,
· PDP-tags:

<PDP> and </PDP>,

· Argument-tags:
<argument> and </argument>.

There is one root element in an XML document, which in our case is the policy element. All other elements occur within the begin-tag and the end-tag of the policy element. XML elements may have attributes, a qualifier that provides additional information. The policy-tag is given a context-attribute and a type-attribute. The context-attribute e.g. may indicate whether the policy is a distributed policy, and the type-attribute gives information about the kind of policy. For a distributed policy used for authentication, the tags of the root element may look like:

<policy context="distributed" type="authentication">
…

</policy>
Furthermore, the pair-tags do not have any attributes. Within the pair-tags one or more condition-tags may be found and only one action-tag. According to this, at least the following is expected:

<policy>

 <pair>

 <condition> </condition>

 <action> </action>

 </pair>

</policy>
To distinguish the different kind of conditions, we introduce a type-attribute with the following values:

· type="computed"

The condition is a computed expression. All necessary components are represented by the subsequent XML elements.

· type="local"

The condition is a reference to an item that can be retrieved locally. It might be a reusable condition or a policy, or even a reference to a policy.

· type="remote"

The condition is a reference to an item that has to be decided at another PDP.

If we assume that policies and all related items are stored in a hash table, an XML element representing a reference has to provide the key to retrieve the referenced item. Therefore, these XML-elements have a key-attribute.

As an example of a policy we take a policy of two terms of two and three conditions respectively. The conditions of the first term are a computed expression and a reference to a local policy. The second term consists of a reusable condition, a reference to a remote policy and a computed expression.

<policy context="distributed" type="authentication">

 <pair>

 <condition type=" computed" >

 <variable name="V11"></variable>

 <operator type="OP1"></operator>

 <variable name="V12"></variable>

 </condition>

 <condition type="local" key="policyY" >

 </condition>

 <action context="local" key="actionX" ></action>

 </pair>

 <pair>

 <condition type="local" key="conditionY" >

 </condition>

 <condition type="remote" key="conditionZ" >

 <PDP>131.211.36.27</PDP>

 <argument >…</argument>

 </condition>

 <condition type="computed" >

 <variable name="V51" ></variable>

 <operator type="OP5" ></operator>

 <constant>C5</constant>

 </condition>

 <action context="local" key="actionY" ></action>

 </pair>

<!-- This last pair is mandatory -->

 <pair>

 <error> </error>

 </pair>

</policy>

The above given example might be accompanied with a DTD file with the following content:

<!ELEMENT policy pair+ >

<!ATTLIST policy

 context CDATA #REQUIRED

 type CDATA #REQUIRED

>

This says that within a policy-tag there are one or more pair-tags. The policy element has two attributes, context and type, both required.

<!ELEMENT pair ((computed_condition | local_condition | remote_condition)+, action*) >

Within the pair-tags there occurs at least one condition, and zero or more actions. All actions coupled to a condition will be effected simultaneously, therefore those actions may not be in conflict with each other.

The DTD definitions may be included within the XML document, rather than referring to an external DTD file. Such definitions would be contained in square brackets, like this:

<!DOCTYPE policy [...local subset definitions here...]>
See Appendix B for a complete XML document.

Policy groups

If policies are part of a policy group, actions of the individual policies will become actions of the group. As a policy consists of a logic expression and corresponding action(s), we can view a policy pA with a simple expression EA and corresponding action aA as:

pA:
If EA then aA.

Actions belonging to different policies may be in conflict with each other. If these policies are part of a group, the actions of the group must be functions of the actions of the individual policies, and the actions of the individual policies should be overruled. Suppose the following two simple policies:

pA:
If EA then aA
pB:
If EB then aB,

have conflicting actions aA and aB. A conflict occurs when both expressions EA and EB turn out to be true. A policy(group) pC, which combines the policies pA and pB, must contain expressions such that pA and pB will not be true simultaneously:

pC = (pA ((pB) (pB
with actions aC1 and aC2:

aC1:
If (pA ((pB) then aC1,

aC2:
If pB then aC2

When the Interpreting Device is confronted with a policy like pC, it will retrieve the policies pA and pB and their corresponding actions aA and aB.

AAA request

AAA will have to deal with different incoming request. We will distinguish the following requests according to the requester:

· User request

· PDP request

· PEP request

Those requests occur in different forms of communication taking place among AAA servers:

· User - PDP
communication

· PDP - PDP
communication

· PDP - PEP
communication

· PEP - PEP
communication

Any User request issued by a User speaking the AAA protocol contains the following items:

· address of a Policy Decision Point (PDP)
· address of the requester
· policy reference
· time limit on policy evaluation

· [values for policy variables]
e.g. userid [,passw] [,certificate] in case an authentication policy is involved.
· [policy]
AAA server

As stated above, an incoming request at a PDP entails policy retrieval. The Interpreting Device actually retrieves the policy and does the subsequent evaluation. In case the policy turned out to be a distributed policy, the AAA server is confronted with an adjusted policy build of remote conditions exclusively. This policy returned is a formula from k-DNF(n) containing only remote conditions. Although a Boolean expression may be expressed in different forms, we adhere to the assumption that it is a formula from k-DNF(n). This makes the parsing for the AAA server easier. A remote condition is always a reference to a policy at another PDP together with the necessary input for the remote evaluation. This means that policy forwarding is remote policy referencing.

Sessions

According to the different roles an AAA server may play there are at least two kind of session the server has to deal with:

· PDP session

· PEP session

The AAA server might be involved in the tracking of different distributed policy evaluations. Each of these distributed policy evaluations will be monitored by a PDP-session. In a PDP-session the AAA server keeps track of all outstanding requests concerning a distributed policy evaluation. Individual PDP-session are distinguished by a PDPsessionID.

Policy enforcement means enforcement of the actions of a policy proved to be true. Several processes coupled to the actions will be initiated. Processes consume resources that have to be tracked. Accounting is the collection of data about resource consumption. Somehow the PEP must be able to collect these data.. It therefore needs a data structure to distinguish between the different policy enforcements that may be active at the same time. As soon as a policy enforcement starts a data structure called PEP-session is created. All PEP-sessions are labeled by a PEPsessionID. Resource Managers collect data about resources consumed. During a policy enforcement several Resource Managers may be involved. Not all Resource Managers have to be in the same domain. It is also possible that the processes of actions are initiated at different PEPs. Therefore, the PEP-session will be a distributed data structure.

Physical components identification

According to fig.1 and the Use Case Satisfy request for service, the following components and their relationships are defined as depicted in fig. 7. The component Multi-domain has an aggregation relationship with the class Organization. The interpretation is as follows: a Multi-domain has two or more (2..*) Organization, whereas an Organization is associated with a single Multi-domain. This same relationship holds for an Organization and AAA server.

[image: image10.wmf]User

Organization

AAA server

Multi-domain

PR

has

1

2

..*

1

1

..*

1

requests

0

..*

has

1

1

delegates

Request

0

..*

0

..*

communicates

ASM

Interpreting

Device

1

1

1

..*

0

..*

uses

Figure 8 The main components of the Use Case Satisfy request for service and their relationships.
Each AAA server delegates the policy evaluation to a single Policy Repository. A User has a request for only one AAA server, whereas an AAA server may handle requests of zero or more Users (0..*). This relationship uses a Request. Furthermore, we see a reflexive relationship, called 'communicates', shown on the component AAA server. This means that multiple AAA servers communicate with one another.

Appendices

Appendix A

Sets

A set S is any well-defined list or collection of objects.

The statement "p belongs to S" is written as p(S and its negation as p(S.

The set with no elements is called the empty set or null set and is denoted by (.

If every element in a set A is also an element of a set B, then A is called a subset of B, and this relationship is written as A(B. It is still possible that A=B for a subset A of B, in case A(B we call A a proper subset of B and write, A(B.

Important to notice is that for any nonempty set A we have ((A.

Partitions

Let S be any nonempty set. A partition of S is a subdivision of S into nonoverlapping, nonempty subsets. Thus a partition of S is a collection {Ai} of nonempty subsets of S, called cells, such that:

1. Each a in S belongs to one of the Ai.

2. The Ai are mutually disjoint; i.e. if Ai(Aj then Ai(Aj=(.

Notice the difference between a cell Ai of a set S and a subset A of S, A maybe empty whereas Ai not.

Graphs

An undirected graph G is a triple (V, E, (), where V the vertex set with 0<|V|<(, E the edge set with |E|<(, and (the incidence function with (:E(V(V. This function relates an edge e(E to an unordered pair of vertices v,w(V, i.e. ((e)=(v,w). We say that e is incident to v and w and that v and w are adjacent; v and w are also called the endpoints of e. If two edges e and e' have a common endpoint, they are called adjacent; if they have two common endpoints, they are called parallel. An edge e with only one endpoint v is called a loop, ((e)=(v,v). A graph is called simple if it has no loops or parallel edges.

As we will only consider simple graphs, the function (is a one-to-one function and so E may be identified as a subset of V(V. In that case the graph G is determined by the pair (V, E) alone and we will write G=(V, E).

We say that a graph G'=(V', E') is a subgraph of G=(V, E) if V'(V, and E'(E.

Given an undirected graph G=(V, E), the directed version of G is the directed graph G'=(V, E'), where the ordered pair (u,v)(E' if and only if the unordered pair (u,v) (E. That is, each undirected edge (u,v) in G is replaced in the directed version G' by the two directed edges (u,v) and (v,u).

Appendix B

Below an example of a policy in XML. For the parsing a DTD file is retrieved via a CGI-program. The policy is in DNF (logic-tag) and consists of two terms. The first term has two conditions, a computed condition and a reference to a local condition. This reference may yield a policy or a reusable condition. The second term consists of three conditions, a reference to a local condition, a reference to a remote condition, and a computed condition.

<?xml version="1.0"?>

<!DOCTYPE policy SYSTEM "http://127.0.0.1/cgi-bin/dtd.exe?policy" [

]>

<policy context="distributed" type="authentication">

 <pair>

 <computed_condition id="c1" >

 <variable name="V11" ></variable>

 <operator type="OP1" ></operator>

 <variable name="V12" ></variable>

 </computed_condition>

 <local_condition id="c2" key="policyY" >

 </local_condition>

 <action context="local" key="actionX" ></action>

 </pair>

 <pair>

 <local_condition id="c3" key="conditionY" >

 </local_condition>

 <remote_condition id="c4" key="conditionZ" >

 <PDP>131.211.36.27</PDP>

 <argument type="condition" >c1</argument>

 </remote_condition>

 <computed_condition id="c5" >

 <variable name="V51" ></variable>

 <operator type="OP5" ></operator>

 <constant>C5</constant>

 </computed_condition>

 <action context="local" key="actionY" ></action>

 </pair>

</policy>

The DTD

Below the content of a DTD file.

<?xml version="1.0" encoding="UTF-8"?>

<!ELEMENT policy pair+ >

<!ATTLIST policy

 context CDATA #REQUIRED

 type CDATA #REQUIRED

>

<!ELEMENT pair ((computed_condition | local_condition | remote_condition)+, action*) >

<!ELEMENT computed_condition (variable, operator, (variable | constant)) >

<!ELEMENT local_condition EMPTY >

<!ATTLIST local_condition

 key CDATA #REQUIRED

>

<!ELEMENT remote_condition (PDP, argument*) >

<!ATTLIST remote_condition

 key CDATA #REQUIRED

>

<!ELEMENT variable EMPTY >

<!ATTLIST variable

 name CDATA #REQUIRED

>

<!ELEMENT operator EMPTY >

<!ATTLIST operator

 type CDATA #REQUIRED

>

<!ELEMENT constant (#PCDATA) >

<!ELEMENT PDP (#PCDATA) >

<!ELEMENT argument (#PCDATA)>

<!ATTLIST argument

 type CDATA #REQUIRED

>

<!ELEMENT action EMPTY >

<!ATTLIST action

 context CDATA #REQUIRED

 key CDATA #REQUIRED

>

Test enviroment

The above XML and corresponding DTD file can be easily tested on a Microsoft platform with JAVA installed. The following packages and setup are needed.

· The Simple API for XML, SAX 1.0:
http://www.megginson.com/SAX/SAX1/index.html
Unzip the file saxjava-1.0.zip in for instance C:\XML

Add to your autoexec.bat:
SET CLASSPATH=%CLASSPATH%;C:\XML\sax.jar
· Download Java API for XML Parsing:
http://java.sun.com/xml/download.html
Execute jaxp-1_0_1-win.exe.

Add to your autoexec.bat:

SET CLASSPATH=%CLASSPATH%;C:\PROGRAM FILES\JAVASOFT\JAXP1.0.1\JAXP.JAR;

SET CLASSPATH=%CLASSPATH%;C:\PROGRAM FILES\JAVASOFT\JAXP1.0.1\PARSER.JAR;
· Download the JAXP XML tutorial:
http://java.sun.com/xml/tutorial_intro.html
Unzip the file jaxp_tutorial-2_5.zip
Compile the docs\tutorial\sax\work\Echo10.java file, which implements a validating parsing and takes notice of the DTD file.

The JAVA API interprets the Doctype-tag and connects to the http-server to retrieve the DTD file.

The CGI-bin program dtd.exe connects to an Access database to extract the DTD file.

One can also include the DTD file into the XML file, instead of retrieving it from somewhere else.

References

PFWG

Policy Terminology

CIMCPM
CIM Core Policy Model. http://www.dmtf.org/spec/Whitepapers/CIM_Policy24_wp.htm Distributed Management Task Force.

RIVEST 87
Rivest, Ronald L. Learning Decision Lists; Machine Learning 2: 229-246, 1987.

� See appendix A

_1032256004.doc

Lookup policy

Evaluate policy

Authenticate User

Accounting

Satisfy request for service

User

AAA request

Authorize User

<<include>>

<<include>>

<<extend>>

<<extend>>

<<include>>

policy requires authorization

policy requires authentication

Enforce policy

<<extend>>

_1032950872.doc
[image: image1.wmf]}

{

2

+

j

e

[image: image2.wmf]}

,

{

1

+

j

j

e

e

[image: image3.wmf]}

{

3

+

j

e

[image: image4.wmf]}

,

{

5

4

+

+

j

j

e

e

[image: image5.wmf](

)

4

3

2

,

+

+

+

j

j

j

e

e

e

r

[image: image6.wmf](

)

3

+

j

e

r

[image: image7.wmf](

)

5

+

j

e

r

[image: image8.wmf](

)

4

+

j

e

r

[image: image9.wmf](

)

1

,

+

j

j

e

e

r

A

E

C

D

� EMBED Equation.3 ���

B

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

Domain boundary

� EMBED Equation.3 ���

� EMBED Equation.3 ���

_1026121675.unknown

_1026241551.unknown

_1026284402.unknown

_1029326523.unknown

_1029326659.unknown

_1029326761.unknown

_1029326832.unknown

_1029326578.unknown

_1026284622.unknown

_1026284745.unknown

_1026284521.unknown

_1026284363.unknown

_1026284377.unknown

_1026284323.unknown

_1026121933.unknown

_1026241469.unknown

_1026241492.unknown

_1026122022.unknown

_1026121775.unknown

_1026121886.unknown

_1026121698.unknown

_1025948887.unknown

_1025949313.unknown

_1026118093.unknown

_1026118140.unknown

_1025949442.unknown

_1025949101.unknown

_1025949264.unknown

_1025948942.unknown

_1025700225.unknown

_1025700613.unknown

_1025700726.unknown

_1025700528.unknown

_1025697966.unknown

_1025698260.unknown

_1025697809.unknown

_1033216313.unknown

_1033373681.doc

User

Organization

AAA server

Multi-domain

PR

has

1

2..*

1

1..*

1

requests

0..*

has

1

1

delegates

Request

0..*

0..*

communicates

ASM

Interpreting

Device

1

1

1..*

0..*

uses

_1033215769.doc
[image: image1.wmf]3

1

c

c

[image: image2.wmf]5

2

1

c

c

c

[image: image3.wmf]4

3

c

c

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

false

false

false

true

true

true

a1

a2

a3

ERROR

_1033212157.unknown

_1033213215.unknown

_1033215591.unknown

_1033215663.unknown

_1033215547.unknown

_1033213188.unknown

_1033211414.unknown

_1032939184.doc

AAA

PR

PR

AAA

PR

AAA

PR

AAA

AD

User

DB

ASM

ASM

ASM

ASM

AD

AD

_1029326491.doc
[image: image1.wmf]}

{

2

+

j

e

[image: image2.wmf]}

,

{

1

+

j

j

e

e

[image: image3.wmf]}

{

3

+

j

e

[image: image4.wmf]}

,

{

5

4

+

+

j

j

e

e

[image: image5.wmf](

)

4

3

2

,

+

+

+

j

j

j

e

e

e

r

[image: image6.wmf](

)

3

+

j

e

r

[image: image7.wmf](

)

5

+

j

e

r

[image: image8.wmf](

)

4

+

j

e

r

[image: image9.wmf](

)

1

,

+

j

j

e

e

r

A

E

C

D

� EMBED Equation.3 ���

B

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

_1026121675.unknown

_1026241551.unknown

_1026284402.unknown

_1029326523.unknown

_1029326659.unknown

_1029326761.unknown

_1029326832.unknown

_1029326578.unknown

_1026284622.unknown

_1026284745.unknown

_1026284521.unknown

_1026284363.unknown

_1026284377.unknown

_1026284323.unknown

_1026121933.unknown

_1026241469.unknown

_1026241492.unknown

_1026122022.unknown

_1026121775.unknown

_1026121886.unknown

_1026121698.unknown

_1025948887.unknown

_1025949313.unknown

_1026118093.unknown

_1026118140.unknown

_1025949442.unknown

_1025949101.unknown

_1025949264.unknown

_1025948942.unknown

_1025700225.unknown

_1025700613.unknown

_1025700726.unknown

_1025700528.unknown

_1025697966.unknown

_1025698260.unknown

_1025697809.unknown

_1029328010.doc
[image: image1.wmf]}

{

2

+

j

e

[image: image2.wmf]}

,

{

1

+

j

j

e

e

[image: image3.wmf]}

,

{

5

4

+

+

j

j

e

e

[image: image4.wmf](

)

4

3

2

,

,

+

+

+

j

j

j

e

e

e

r

[image: image5.wmf](

)

5

+

j

e

r

[image: image6.wmf](

)

(

)

(

)

4

3

2

,

,

+

+

+

j

j

j

e

a

e

a

e

a

[image: image7.wmf](

)

1

,

+

j

j

e

e

r

[image: image8.wmf](

)

(

)

1

,

+

j

j

e

a

e

a

[image: image9.wmf](

)

5

+

j

e

a

[image: image10.wmf](

)

4

+

j

e

r

[image: image11.wmf](

)

3

+

j

e

r

[image: image12.wmf](

)

3

+

j

e

a

[image: image13.wmf](

)

4

+

j

e

a

A

E

C

A

� EMBED Equation.3 ���

B

� EMBED Equation.3 ���

E

� EMBED Equation.3 ���

� EMBED Equation.3 ���

C

� EMBED Equation.3 ���

� EMBED Equation.3 ���

B

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

E

A

D

� EMBED Equation.3 ���

� EMBED Equation.3 ���

D

� EMBED Equation.3 ���

E

A

_1026121675.unknown

_1026241551.unknown

_1028537243.unknown

_1028537911.unknown

_1029327277.unknown

_1029327571.unknown

_1029327784.unknown

_1029327948.unknown

_1029327658.unknown

_1029327498.unknown

_1028538665.unknown

_1028538703.unknown

_1028538027.unknown

_1028537666.unknown

_1028537832.unknown

_1028537391.unknown

_1026284402.unknown

_1026284622.unknown

_1026284745.unknown

_1026284521.unknown

_1026284363.unknown

_1026284377.unknown

_1026284323.unknown

_1026121933.unknown

_1026241469.unknown

_1026241492.unknown

_1026122022.unknown

_1026121775.unknown

_1026121886.unknown

_1026121698.unknown

_1025948887.unknown

_1025949313.unknown

_1026118093.unknown

_1026118140.unknown

_1025949442.unknown

_1025949101.unknown

_1025949264.unknown

_1025948942.unknown

_1025700225.unknown

_1025700613.unknown

_1025700726.unknown

_1025700528.unknown

_1025697966.unknown

_1025698260.unknown

_1025697809.unknown

_1030272261.doc
[image: image1.wmf]}

{

2

+

j

e

[image: image2.wmf]}

,

{

1

+

j

j

e

e

[image: image3.wmf]}

{

3

+

j

e

[image: image4.wmf]}

,

,

{

3

4

4

+

+

+

k

j

j

e

e

e

[image: image5.wmf](

)

4

3

2

,

,

+

+

+

j

j

j

e

e

e

r

[image: image6.wmf](

)

3

+

j

e

r

[image: image7.wmf](

)

5

+

j

e

r

[image: image8.wmf](

)

4

+

j

e

r

[image: image9.wmf](

)

1

,

+

j

j

e

e

r

[image: image10.wmf](

)

1

+

k

e

r

[image: image11.wmf](

)

2

+

k

e

r

[image: image12.wmf](

)

3

+

k

e

r

[image: image13.wmf](

)

3

+

k

e

r

[image: image14.wmf]}

{

1

+

k

e

[image: image15.wmf]}

{

2

+

k

e

A

E

C

D

� EMBED Equation.3 ���

B

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

K

� EMBED Equation.3 ���

� EMBED Equation.3 ���

L

M

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

_1026121675.unknown

_1028032011.unknown

_1028117757.unknown

_1030271394.unknown

_1030271716.unknown

_1030271896.unknown

_1030272069.unknown

_1030272145.unknown

_1030271833.unknown

_1030271418.unknown

_1029328208.unknown

_1029328229.unknown

_1029328094.unknown

_1028033361.unknown

_1028033618.unknown

_1028033661.unknown

_1028033420.unknown

_1028033232.unknown

_1028033334.unknown

_1028032907.unknown

_1026241551.unknown

_1026284402.unknown

_1026284622.unknown

_1026284745.unknown

_1026284521.unknown

_1026284363.unknown

_1026284377.unknown

_1026284323.unknown

_1026121933.unknown

_1026241469.unknown

_1026241492.unknown

_1026122022.unknown

_1026121775.unknown

_1026121886.unknown

_1026121698.unknown

_1025948887.unknown

_1025949313.unknown

_1026118093.unknown

_1026118140.unknown

_1025949442.unknown

_1025949101.unknown

_1025949264.unknown

_1025948942.unknown

_1025700225.unknown

_1025700613.unknown

_1025700726.unknown

_1025700528.unknown

_1025697966.unknown

_1025698260.unknown

_1025697809.unknown

_1028535726.doc
[image: image1.wmf](

)

(

)

)

(

,

,

4

1

2

+

+

+

j

j

j

e

a

e

a

e

a

[image: image2.wmf](

)

3

+

j

e

a

[image: image3.wmf](

)

5

+

j

e

a

[image: image4.wmf](

)

4

+

j

e

a

[image: image5.wmf](

)

(

)

1

,

+

j

j

e

a

e

a

A

E

C

D

B

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

_1026121675.unknown

_1026241551.unknown

_1026284402.unknown

_1028534286.unknown

_1028535076.unknown

_1028535142.unknown

_1028535540.unknown

_1028534423.unknown

_1026284622.unknown

_1026284745.unknown

_1026284521.unknown

_1026284363.unknown

_1026284377.unknown

_1026284323.unknown

_1026121933.unknown

_1026241469.unknown

_1026241492.unknown

_1026122022.unknown

_1026121775.unknown

_1026121886.unknown

_1026121698.unknown

_1025948887.unknown

_1025949313.unknown

_1026118093.unknown

_1026118140.unknown

_1025949442.unknown

_1025949101.unknown

_1025949264.unknown

_1025948942.unknown

_1025700225.unknown

_1025700613.unknown

_1025700726.unknown

_1025700528.unknown

_1025697966.unknown

_1025698260.unknown

_1025697809.unknown

