Policies in a generic AAA environment

Introduction

In this document a formal model of a policy is presented in the context of a generic AAA environment. We will focus our attention on that kind of policy that is evaluated in response to a service request of a user. That policy will determine all requirements that need to be fulfilled before the service asked for will be delivered. The whole behavior of the AAA server, which receives the request, is a result from the evaluation of that policy. In order to make the behavior of the AAA server policy driven, the definition of a policy must provide recursion. This means a policy must be able to reference to another policy. Furthermore, a policy must allow distribution, i.e. parts of the policy may be stored at a remote AAA server.

AAA environment

This section introduces an abstract view of an AAA environment, and what kind of components is part of it. Only those parts of a future AAA environment are identified that are sufficient to develop a formal model of a policy. The network of generic cooperating AAA servers can be partitioned into Administrative Domains (AD). An Administrative Domain is a collection of AAA servers under the same administrative control and grouped together for administrative purposes. Each AAA server belongs to one AD, whereas each AD might have more than one AAA server. An AAA server may receive a request from an entity operating on a user's behalf. The content of the request contains what kind of service the user wants. This request is forwarded to a so-called Policy Decision Point (PDP) where a policy resides that needs to be evaluated with respect to the service asked. A policy is a set of rules to administer, manage, and control access to network resources. A PDP can be viewed as an AAA server that manages a Policy Repository (PR) where policies reside. Each AD has at least one PDP. It depends on the evaluation of the policy whether the request will be accepted or rejected. In general an AAA server has to communicate with other AAA servers for a full acceptance or rejection of the request. This occurs when the policy to be evaluated is a distributed policy. Some parts of a policy may only be solved by specialized application. In that case the AAA server resorts to the Application Specific Module (ASM) for that application.

[image: image1.wmf]AD boundary

AAA

PR

AAA

PR

AAA

PR

ASM

ASM

AAA

PR

ASM

ASM

AD boundary

Figure 1. The abstract view of a generic AAA environment.
Use Case diagram

We are considering the role of a policy in response to a service request. To illustrate the scope of this policy in the generic AAA environment, we present an UML Use Case diagram for a future system of AAA servers, fig. 2. As this is not the right document to fully describe the Use Cases in fig. 2, only a concise description is presented.

We define a single Actor, called User, as an entity that speaks the AAA protocol. This generalized user wants a request for a service to be satisfied, the Use Case Satisfy request for service. The relationship between the Actor and this Use Case is a bi-directional association, it depicts the participation of the Actor in the Use Case. This association is bi-directional because the User expects an answer to his request.

At the highest level we have:

· Use Case:

Satisfy request for service
· System:

Network of AAA servers
· Actors:

User
· Precondition:
None
In total we distinguish seven Use Cases:

· Satisfy request for service

· Lookup policy

· Evaluate policy

· Authenticate User

· Authorize User

· Enforce policy

· Perform accounting

Between the Use Case Satisfy request for service and Lookup policy, as well as between Satisfy request for service and Evaluate policy, there exists an include relationship. The functionality described in Satisfy request for service always includes the functionality of Lookup policy and Evaluate policy. Those last two Use Cases are mandatory for Satisfy request for service.

The extend relationships are interpreted as conditional include relationships. The Use Cases Authenticate User and Authorize User are only performed if some internal condition in the Use Case Evaluate policy requires it.

The Use Case Satisfy request for service.

This Use Case will describe how an AAA server deals with an AAA service request issued by a device acting on the behalf of a real user, and what answers towards the user can be given. Every service request is forwarded to the AAA server where the process to satisfy a request actually starts, it is the Policy Decision Point associated with the request. This AAA server may manage a Policy Repository where a policy resides that needs evaluation. The AAA server evaluates the policy and formulates a response. It is of importance that the requester is well informed about the outcome of his request, especially when his request is rejected.

[image: image2.wmf]Lookup policy

Authenticate User

Perform accounting

Satisfy request for service

User

service request

Authorize User

<<

include>>

<<

include>>

<<

extend>>

<<

extend>>

<<

include>>

Evaluate policy

policy requires

authorization

policy requires

authentication

Enforce policy

<<

extend>>

Figure 2. Use Case diagram for a service request.
If a request is rejected the user is informed about the reason why. If so be that different AAA servers are involved in the decision of a request, (error) messages from AAA servers down the decision chain have to be part of the answer towards the user. In case the user is offered the possibility to negotiate about the rejected request, the answer will provide him information for an adjusted request. For instance a user asked for a 3 hours connection, but the service can only deliver 2 hours.

In case a request is accepted one of the following responses might be given. The user is asked to confirm the accepted request before the requested service will be delivered. The request is accepted but the user is asked to accept a condition before the service will be delivered. The service requested will be affected without further interference of the user. The user will be informed about the service activated.

The Use Case Lookup policy.

The AAA server of a PDP retrieves the policy that needs to be satisfied before the service can be delivered. Which policy to retrieve must be clear from the request. Any request for a service will result in a policy lookup in the local PR, also those requests that contain a policy (pushed policy).

The Use Case Evaluate policy.

Policies can either be used in a stand-alone fashion or they can refer to other policies. It is the task of the AAA server to retrieve all policies necessary.

A complex situation occurs when a service request for a PDP may contain a policy, a policy pushed by the user. If this happens it must be clear what logical relation this policy has with the stored policy, and whether this pushed policy contains conditions the user is not authorized to push.

The request may contain Attribute Value Pairs (AVP), which values have to be substituted for free variables occurring in the policy. Some free variables in the policy may only be solved by a specific application. For those free variables the AAA server resorts to the Application Specific Module (ASM) for that application. The AAA server substitutes these values at the proper place into the policy. After the AAA server has substituted all it knows, it decides whether the policy is false, true or undecided yet. It is the responsibility of the AAA server to keep track of the decision process and combine the answers retrieved into an answer for the user.

The Use Case Authenticate User.

The authentication of the user is the process to verify the proof of his identity. Authentication of the user is only performed if the policy under evaluation requires it. When it so be, the request contains information about necessary policy variables with respect to authentication. Furthermore, the request may contain a certificate or password, his proof of identity. In order to be sure the user is the one he says he is, his proof of identity needs to be verified.

The Use Case Authorize User.

Comparing the user's authenticated identity against the service requested for performs authorization of a user's request, i.e. whether the user is allowed to obtain the requested service or resource. Like authentication, authorization is only performed if a policy requires it. Authorization requires authentication performed first.

The Use Case Enforce policy.

If the policy evaluated turns out to be true, the policy will be enforced at a Policy Enforcement Point (PEP). The user might have given his consent to enforce the policy. The actions of the accepted policy refer to processes necessary to deliver the service requested for. These processes have to be started and provided with the proper information. Processes consume resources that are monitored by Resource Managers. Data about resources consumed must be available during and after service has been delivered.

The Use Case Perform accounting.

Accounting is the collection of all the data about resource consumption. Intermediate accounting or accounting indication informs the user about currently used resources. Resource Managers resorts to Meters that capture data about resource consumption in the network.

Policies

Introduction

As can be derived from the Use Case diagram of fig. 2, the behavior of an AAA server is policy driven with respect to a service request. In order to expand the Use Case Evaluate policy it is important to have a model for policies. In this section we will outline such a model.

Formal model

In its most abstract representation a policy can be viewed as a Boolean formula like:

e1 e2 e3 e4 e5 (e1 e2 e3 e4 ē5 e6
wherein the binary AND-operator ('(') is implicitly applied by the juxtaposition of two Boolean variables, and the unary NOT-operator is represented by a bar above the variable.

This Boolean formula is called to be written in disjunctive normal form (DNF), it is the disjunction (or) of terms. To be more specific it is in 6-DNF; we define k-DNF to be the set of Boolean formulae in disjunctive normal form where each term contains at most k literals (each variable ei is associated with two literals: ei itself and its negation ēi).

Another way a policy can appear is in conjunctive normal form, it is the conjunction of clauses, like:

(e1 (e2 (e3) (e4 (e5) (ē5 (e6)

We define k-CNF to be the set of Boolean formulae in conjunctive normal form where each clause contains at most k literals. The formula shown is in 3-CNF.

Both representations of a Boolean formula, DNF and CNF, are equally valid. Without loss of generality we will adhere to the DNF representation of a policy, during the following discussion.

So far the definition of a policy does not imply the meaning of recursion and distribution. By recursion we mean that a literal may be a reference to a policy, this would allow the notion of policy groups [CIMCPM]. Furthermore policies can be distributed, this means a literal may also be a reference to a policy stored at a remote policy repository. A policy may also contain expressions like "cost (max_cost", these are called predicates and contain free variables, like cost and max_cost. To accommodate these features the following definition of a service policy is proposed. Here we introduce '¬' for the logical NOT-operator. The terminal symbols are the characters '(', '¬', '(', '(', '(', ')', ',' , whereas the nonterminals are between triangular brackets.

<policy>

=
(<condition>(<action>)

<condition>

=
<term> [(<condition>]

<term>

=
[¬]<literal> [(<term>]

<literal>

=
<local policy reference>
|

<remote policy reference>
|

<computed expression>

<computed expression>

=
(<predicate>(<action>)

<predicate>

=
(<free variable><operator><free variable>) |

(<free variable><operator><constant>)

<free variable>

=
(<name>,<variable type>)

<name>

=
<character string>

<constant>

=
<floating-point number>

<local policy reference>
= <key>

<remote policy reference>
= (<key>,<address>,<argument list>,

<response definition>)

<argument list>

= [<argument> [<argument list>]]

A policy is viewed as 'IF <condition> THEN <action>'. The <condition> is a Boolean expression in k-DNF. An <action> is the definition of what is to be done when it is decided to be true, i.e. to enforce it. A <literal> can be a reference to a locally stored policy, <local policy reference>, a reference to a policy stored at a remote PDP, <remote policy reference>, or a computed expression, <computed expression>. A <computed expression> is viewed as 'IF <predicate> THEN <action>'.

A <free variable> is a 2-tuple (<name>, <variable type>), the <name> identifies the variable and the <variable type> says how a value for this <free variable> can be retrieved.

For example:

<variable type>
=
AVP | ASM | LDAP | SQL | SNMP

The terminal value AVP gives a policy evaluator the information that a value for the <free variable> is an AVP in the request, and the <name> component provides the information which AVP is needed. In case the <variable type> equals SQL, the policy evaluator uses <name> to issue an SQL-query on a local database.

A <remote policy reference> might be interpreted as an Remote Procedure Call(RPC)

Suppose the following function Max is a RPC with arguments i,j and return value r
Max(i(Z, j (Z) r (Z

pre: true

post: (r = i (r = j) (i (r (j (r

The first line defines the name of the RPC along with its arguments and the return value. The second line is the precondition, it expresses the requirements the caller has to meet, in this case nothing is required. The last line is the postcondition, it expresses what the caller can expect if the precondition is met.

In analogy to an RPC a <remote policy reference> should contain the following:

· A key identifying the remote policy, <key>
· The PDP that has access to the policy referenced, <address>
· The parameters to pass, <argument list>
· Information about the response, <response definition>
Let's consider a policy p,

p: (<condition>(<action>),
with <condition> having a single term of three <literal>'s, say e1e2e3.. Let e1 be a <computed expression>, e2 and e3 references to a policy, either <local policy reference> or <remote policy reference>. Suppose that a referenced policy does not contain references to a policy, so that policy is a <computed expression>.

Then the policy p looks logically like:

(((<predicate>1(<action>1)(<condition>2(<action>2)

(<condition>3(<action>3))(<action>)

which expands to

(((<predicate>1(<action>1)((<predicate>21(<action>21)(<action>2)

((<predicate>31(<action>31)(<action>3))(<action>)

The logical expression 'a(b' should NOT be interpreted as a conditional statement with the following truth table from the field of proposition calculus:

 a | b | a(b

 T | T | T

 T | F | F

 F | T | T

 F | F | T

with T = True, F = False.

If a = F and b = T, i.e. the condition is false and the action can be enforced, 'a(b' should NOT be true, but false. If a response to a remote policy returns a false answer, the associated action should be considered to be false too. In that case a = F and b = T will not occur. If a = F and b = F, 'a(b' should also be false.

If a <literal> refers to a remote policy, the response should contain the action if the remote policy is decided to be true. The actions of remote policies should not be enforced.

It is the responsibility of a policy administrator to store policies that in expanded form do not contain conflicting actions. A policy in extended form should not be a contradiction. A policy is a contradiction if it is false for any truth-value of its components.

Local versus remote literals

A local literal can be decided locally, that means no request for another AAA server is needed. If a literal is presented to a local ASM and the application associated contacts to other applications elsewhere is not of the concern of the AAA server. A remote literal triggers an AAA request for another PDP.

Evaluation order

The condition of a policy is a Boolean expression in DNF. Evaluation a policy is performed from left to right, i.e. the left term is the first term to be evaluated, and the left literal of the first term is the first literal to be evaluated. This implicitly means that a term has at least the same priority as the terms at the right. It is up to the AAA server to determine whether all remote literals in a term are evaluated in parallel or in order. In order means that an answer to a request for a remote literal is waited for, before the next one is evaluated.

Conflict handling

From [Grosof] we take the following example of two conflicting rules:

· Rule A: "If buyer returns the purchased good for any reason, within 30 days, the purchase amount, minus a 10% restocking fee, will be refunded."

· Rule B: "If buyer returns the purchased good because it is defective, within 1 year, the full purchase amount will be refunded."

Both rules are clearly in conflict with each other. In case the IF-parts are both true, then conflicting actions (THEN-part) has to be enforced. Let us view the two policies in the notation of this document:

pA:
(<condition>A(<action>A)

pB:
(<condition>B(<action>B)

When the conditions have an overlap, three situations are distinguished (Fig. 3):

[image: image3.png]A

A
:
-

A
l®

Figure 3 Three situations for overlapping conditions, ¬A is short for: ¬ <condition>A.

According to fig. 3, three different policies cover the situations depicted:

· (AB) p1: (<condition>1(<action>1), with <condition>1 a single term of two references, <policy reference>A<policy reference>B, which expands to ((<condition>A(<action>A) (<condition>B(<action>B)(<action>1).

Herein, <action>1 equals <action>B to implement the priority rule "If both rules A and B apply, then rule B wins".

· (A¬B) p2: (<condition>2(<action>2), with <condition>2 a single term of two references, <policy reference>A ¬<policy reference>B, which expands to ((<condition>A(<action>A)¬(<condition>B(<action>B)(<action>2).
Herein, <action>2 equals <action>A.

· (¬AB) p3: (<condition>3(<action>3), with <condition>3 a single term of two references, ¬<policy reference>A<policy reference>B, which expands to
(¬(<condition>A(<action>A) (<condition>B(<action>B)(<action>3).

Herein, <action>3 equals <action>B.

To determine if a buyer will be refunded at least the purchase amount minus a 10% restocking fee, the policy needed should read:

p:
(<condition>(<action>),

with
<condition> = <policy reference>1 (<policy reference>2 (

 <policy reference>3
This policy will be false if a buyer returns a non-defective purchase good after 30 days.

The topology

We are not interested in the underlying network connecting the AAA servers, but are only interested in the communication between AAA servers. In the simplest view of the network any AAA server may send a request to any other AAA server. This would mean that the topology of AAA servers as a fully connected graph G=(V, E). In practice the topology G of AAA servers will not be a fully connected graph, since there are specialized AAA servers only known to a limited number of other servers. A vertex will be assigned to each couple of an AAA server and its PR. An edge between two vertices u,v(V, represents the possibility that the AAA server at u and v can communicate with each other directly. How the information travels over the Internet is not of our concern. When an AAA server has to deal with a distributed policy, it has to communicate with other servers, which in their turn may have to communicate again. Any policy results in a graph G'=(V', E'), the decision graph of the policy, with E' consisting of all AAA servers necessary for the decision of the policy. This graph G' will be a sub-graph of the directed version of G
, with V'(V. A directed edge (vi, vj), vi ,vj (V', means that in the decision process of the policy the AAA server at vi sends a request to the server at vertex vj.

Decision graph of a policy

As stated above to each distributed policy a decision graph is associated. This graph is a result from the PRs that play a role in the decision of the policy. In fig. 4 such a decision graph is depicted for a distributed policy at vertex A with remote literals ej, ej+1, …,ej+5. Of those literals ej and ej+1 are decidable at vertex B, ej+2 at C, ej+3 at D and ej+4 and ej+5 at vertex E. This graph is a result of the fact that in the PR of vertex A the entries ej and ej+1 yield the address of B, entries ej+2 ej+3 and ej+4 that of C, and entry ej+5 that of E. At C both ej+3 and ej+4 are forwarded to D and E, respectively.

Some remarks can be made about the decision graph of fig. 3. The first and most important notice is that this graph belongs to a distributed policy that is decidable, and that the graph is a directed acyclic graph (DAG). Therefore, vertex A is the only vertex with a zero in-degree, it has only outgoing edges, we will call this the root of the communication graph. Furthermore, the decision graph has the following properties. The remote literals at A are partitioned over the requests r along the outgoing edges of A. At a vertex with a zero out-degree (vertex B, D, or E) the literals of the requests along the incoming edges are decidable at that vertex. At those vertices with a non-zero in-degree and out-degree (vertex C), the literals of the requests along the incoming edges are partitioned over the vertex itself and the requests along the outgoing edges or are partitioned over the requests along the outgoing edges exclusively.

[image: image4.wmf]A

E

C

D

B

}

,

{

1

+

j

j

e

e

}

{

3

+

j

e

}

,

{

5

4

+

+

j

j

e

e

(

)

4

3

2

,

+

+

+

j

j

j

e

e

e

r

(

)

3

+

j

e

r

(

)

5

+

j

e

r

(

)

1

,

+

j

j

e

e

r

(

)

4

+

j

e

r

}

{

2

+

j

e

Figure 4 A decision graph of a distributed, decidable policy.
Now we will give a definition of a decision graph for a distributed policy. Here we apply the following restriction: A remote literal is not allowed to spawn a new policy. This restriction is only made to keep the discussion in this document simple.

Def. Suppose the network of AAA servers forms a graph G=(V, E). Let s(V to be the vertex representing a PDP where a policy P resides. Furthermore, let P contain a nonempty set R of remote literals. Then the decision graph of the distributed policy P is a subgraph G' of the directed version of G, G'=(V', E'), V'(V, such that the following properties hold. V' has at least two vertices, with s(V' and s has at least one outgoing edge. The requests along the outgoing edges of s are a partition of the set R of remote literals. Each other vertex of the graph has at least one incoming edge, and the literals of the requests along the incoming edges have each a nonempty entry at the PR. The requests along the outgoing edges are a partitioning of a nonempty subset of the literals of the requests along the incoming edges.
This definition allows a decision graph for an undecidable policy. If in fig. 4 vertex D forwards r(ej+3) to A again, the decision never stops.

A distributed policy at a vertex A is decidable if its decision graph is a directed acyclic graph.

We assume that the answers to the remote literals follow the opposite route, i.e. in the decision graph the directed edges change direction. Thus, the answer to r(ej+4) , a(ej+4), travels form E via C back to A.

[image: image5.wmf]A

E

C

D

B

(

)

3

+

j

e

a

(

)

5

+

j

e

a

(

)

1

,

+

j

j

e

e

a

(

)

4

+

j

e

a

(

)

4

1

2

,

,

+

+

+

j

j

j

e

e

e

a

Figure 5. The aggregation of the answers for the situation in fig. 4.
Distributed policies

A distributed policy has a decision graph with at least two vertices. Thus a distributed policy is the set of all policies involved in the evaluation of a request.

Policy evaluation termination

If a literal may spawn a new policy two situations can be distinguished when the original policy gives rise to a chain of spawned policies. Firstly, more than one of the spawned policies reside at the same PR. Secondly, more than one of the spawned policies reside at different PDPs. In principal the evaluation of a policy may lead to an avalanche of policies and evaluation may go on forever. To guarantee termination of the second kind, the introduction of a maximal PDP count may be appropriate. In order to limit the number of policies spawned at the same PDP the AAA server may keep track of this number and set a limit. Still this does not guarantee that policy evaluation terminates within a certain time span. A limit on the evaluation time suffices. The question is who is responsible for that limit. If the policy turns out to be a distributed policy the AAA server at the root of the decision tree inserts the time (sec) into any outgoing request that may be spent on the evaluation. As soon as an AAA server down the decision chain discovers that the local evaluation exceeds the time in the receiving request it ignores the request. There is no need to inform the AAA server up the decision chain about this ignorance. The AAA server at the root of the decision tree just informs the User about the failure of his request when an answer to an outstanding request failed to come in during the time span set.

Inter-PDP communication

Evaluation of a distributed policy involves the communication among different PDPs. As long as the PDPs belong to the same Administrative Domain, the PDPs may consider each other as a Trusted Node. We assume that all AAA servers (PDPs) within the same Administrative Domain see each other as a Trusted Node. When hop-by-hop authentication is performed and it turns out that the requesting node is a Trusted Node, there are no restrictions on the contents of the request. The situation may differ when the communication between PDPs transverse the boundary of an Administrative Domain. In that case restrictions on the content of a request may be applied, that e.g. are specified in a Service Level Agreement(SLA).

[image: image6.wmf]A

E

C

D

B

}

,

{

1

+

j

j

e

e

}

{

3

+

j

e

}

,

{

5

4

+

+

j

j

e

e

(

)

4

3

2

,

+

+

+

j

j

j

e

e

e

r

(

)

3

+

j

e

r

(

)

5

+

j

e

r

(

)

1

,

+

j

j

e

e

r

(

)

4

+

j

e

r

}

{

2

+

j

e

Domain boundary

Figure 6 Decision graph with nodes in different Administrative Domains.

User request

Any service request issued by a User speaking the AAA protocol contains at least the following items:

· Policy reference

· [time limit on policy evaluation]

· [AVPs for free variables]

e.g. userid [,passw] [,certificate] I case an authentication policy is involved

· [policy]

Appendix A

Sets

A set S is any well-defined list or collection of objects.

The statement "p belongs to S" is written as p(S and its negation as p(S.

The set with no elements is called the empty set or null set and is denoted by (.

If every element in a set A is also an element of a set B, then A is called a subset of B, and this relationship is written as A(B. It is still possible that A=B for a subset A of B, in case A(B we call A a proper subset of B and write, A(B.

Important to notice is that for any nonempty set A we have ((A.

Partitions

Let S be any nonempty set. A partition of S is a subdivision of S into nonoverlapping, nonempty subsets. Thus a partition of S is a collection {Ai} of nonempty subsets of S, called cells, such that:

1. Each a in S belongs to one of the Ai.

2. The Ai are mutually disjoint; i.e. if Ai(Aj then Ai(Aj=(.

Notice the difference between a cell Ai of a set S and a subset A of S, A maybe empty whereas Ai not.

Graphs

An undirected graph G is a triple (V, E, (), where V the vertex set with 0<|V|<(, E the edge set with |E|<(, and (the incidence function with (:E(V(V. This function relates an edge e(E to an unordered pair of vertices v,w(V, i.e. ((e)=(v,w). We say that e is incident to v and w and that v and w are adjacent; v and w are also called the endpoints of e. If two edges e and e' have a common endpoint, they are called adjacent; if they have two common endpoints, they are called parallel. An edge e with only one endpoint v is called a loop, ((e)=(v,v). A graph is called simple if it has no loops or parallel edges.

As we will only consider simple graphs, the function (is a one-to-one function and so E may be identified as a subset of V(V. In that case the graph G is determined by the pair (V, E) alone and we will write G=(V, E).

We say that a graph G'=(V', E') is a subgraph of G=(V, E) if V'(V, and E'(E.

Given an undirected graph G=(V, E), the directed version of G is the directed graph G'=(V, E'), where the ordered pair (u,v)(E' if and only if the unordered pair (u,v) (E. That is, each undirected edge (u,v) in G is replaced in the directed version G' by the two directed edges (u,v) and (v,u).

Appendix B

We will try to describe a policy in XML. Unlike HTML, XML uses tags to tell you what the data means, rather than how to display it. The Document Type Definition (DTD) of an XML document lets one specify the kinds of tags that can be included in the XML document. It also tells a validating parser which tags are valid, and in what arrangements. A DTD tells both validating and nonvalidating parsers where text is expected, which lets the parser determine whether the whitespace it sees is significant or ignorable.
In order to describe a distributed policy the following pairs of begin- and end-tags might be defined in a DTD document (a begin-tag and an end-tag mark each XML element):

· Policy tags:

<policy> and </policy>,

· Condition tags:

<condition> and </condition>
· Term tags:

<term> and </term>
· Computed expression tags:
<computed_expression> and </computed_expression>,

· Local policy tags:

<local_policy> and </local_policy>,

· Remote policy tags:

<remote_policy> and </remote_policy>,

· Predicate tags:

<predicate> and </predicate>
· Variable tags:

<variable> and </variable>,

· Operator tags:

<operator> and </operator>,

· Constant tags:

<constant> and </constant>,

· Action tags:

<action> and </action>,

· PDP tags:

<PDP> and </PDP>,

· Argument list tags:

<argument_list> and </argument_list>,

· Argument tags:

<argument> and </argument>
· Response definition tag:
<response_definition> and </response_definition>
There is one root element in an XML document, which in our case is the policy element. All other elements occur within the begin-tag and the end-tag of the policy element. XML elements may have attributes, a qualifier that provides additional information. The policy tag is given a context-attribute and a type attribute. The context attribute e.g. may indicate whether the policy is a distributed policy, and the type-attribute gives information about the kind of policy. For a distributed policy used for authentication, the tags of the root element may look like:

<policy context="distributed" type="authentication">

…

</policy>
Furthermore, the condition tag does not have any attributes. Within the condition tags one or more term tags may be found and only one action tag. According to this, at least the following is expected:

<policy>

 <condition>

 <term>..</term>

..

 <term>..</term>

 </condition>

 <action> </action>

</policy>

The different kind of literals, are:

· <computed_expression>

The literal is a computed expression. All necessary components are represented by the subsequent XML elements.

· <local_policy>

The literal is a reference to an item that can be retrieved locally. It might be a policy, or even a reference to a policy.

· <remote_policy>

The literal is a reference to an item that has to be decided at another PDP.

A <computed_expression> with free variables, a <predicate>, contains information where or how the variable can be solved. We introduce a type attribute and a name attribute for the variable tag:

· type="AVP"

The variable can be solved by an AVP in the request, the name attribute is used to search for the correct AVP.

· type="ASM"

The variable can be solved by a specific ASM, and the name attribute indicates which ASM to use.

More type attributes may be defined, like: SQL, LDAP, SMNP.

The operator tag might be followed by the operator itself, but an operator like '<' is a meta-character and this will confuse an XML interpreter. A solution might be to use the Unicoded 2.0 character set with JAVA hex- references. We distinguish the following operators

Operator
Reference

<
\u003C

(
\u2264

>
\u003E

(
\u2265

=
\u003D

(
\u2260

A remote literal is always a reference to a remote policy, and may be considered as a RPC(Remote Procedure Call). A remote policy tag has to be followed by a PDP tag, an argument list tag, and a response definition tag.

If we assume that policies are stored in a database, an XML element representing a reference has to provide a key to retrieve the referenced item. Therefore, these XML-elements have a key attribute.

As an example of a policy we take a policy of two terms of two and one literals, respectively. The literals of the first term are a computed expression and a reference to a local policy. The second term consists of a reference to a remote policy.

<policy context="distributed" type="authentication">

 <condition>

 <term>

 <computed_expression>

 <predicate>

 <variable name="V11" type="AVP" ></variable>

 <operator>..</operator>

 <variable name="V12" type="ASM"></variable>

 </predicate>

 <action>…</action>

 </computed_expression>

 <local_policy key="policyX"></local_policy>

 </term>

 <term>

 <remote_condition key="policyY">

 <PDP>131.211.36.27</PDP>

 <argument_list>

 <argument>…</argument>

 <argument>…</argument>

 </argument_list>

 <response_definition>…</response_definition>

 </remote_policy>

 </term>

 </condition>

 <action>….</action>

</policy>

The above given example might be accompanied with a DTD file with the following content:

<!ELEMENT policy (condition, action) >

<!ATTLIST policy

 context CDATA #REQUIRED

 type CDATA #REQUIRED

>

This says that within a policy tag there is one condition tag and one action tag. The policy element has two attributes, context and type, both required.

<!ELEMENT condition term+ >

Within the condition tags there occurs at least one term.

The DTD

Below the content of a DTD file.

<?xml version="1.0" encoding="UTF-8"?>

<!ELEMENT policy (condition, action) >

<!ATTLIST policy

 context CDATA #REQUIRED

 type CDATA #REQUIRED >

<!ELEMENT condition term+ >

<!ELEMENT term (computed_expression | local_policy | remote_policy)+ >

<!ELEMENT computed_expression (predicate, action) >

<!ELEMENT predicate (variable, operator, (variable | constant)) >

<!ELEMENT variable EMPTY >

<!ATTLIST variable

 type (AVP | ASM | SQL | LDAP |SNMP)
#REQUIRED

 name CDATA

#REQUIRED >

<!ELEMENT operator EMPTY >

<!ATTLIST operator

 type CDATA #REQUIRED

>

<!ELEMENT constant (#PCDATA) >

<!ELEMENT local_policy EMPTY >

<!ATTLIST local_policy

 key CDATA #REQUIRED >

<!ELEMENT remote_policy (PDP, argument_list, response_definition) >

<!ATTLIST remote_policy

 key CDATA #REQUIRED >

<!ELEMENT PDP (#PCDATA) >

<!ELEMENT argument_list argument* >

<!ELEMENT argument

<!ATTLIST argument

 type (AVP | ASM | LDAP | SQL) #REQUIRED

 name CDATA #REQUIRED >

<!ELEMENT response_definition (#PCDATA) >

<!ELEMENT action (#PCDATA) >

Test enviroment

The above XML and corresponding DTD file can be easily tested on a Microsoft platform with JAVA installed. The following packages and setup are needed.

· The Simple API for XML, SAX 1.0:
http://www.megginson.com/SAX/SAX1/index.html
Unzip the file saxjava-1.0.zip in for instance C:\XML

Add to your autoexec.bat:
SET CLASSPATH=%CLASSPATH%;C:\XML\sax.jar
· Download Java API for XML Parsing:
http://java.sun.com/xml/download.html
Execute jaxp-1_0_1-win.exe.

Add to your autoexec.bat:

SET CLASSPATH=%CLASSPATH%;C:\PROGRAM FILES\JAVASOFT\JAXP1.0.1\JAXP.JAR;

SET CLASSPATH=%CLASSPATH%;C:\PROGRAM FILES\JAVASOFT\JAXP1.0.1\PARSER.JAR;
· Download the JAXP XML tutorial:
http://java.sun.com/xml/tutorial_intro.html
Unzip the file jaxp_tutorial-2_5.zip
Compile the docs\tutorial\sax\work\Echo10.java file, which implements a validating parsing and takes notice of the DTD file.

The JAVA API interprets the Doctype-tag and connects to the http-server to retrieve the DTD file.

The CGI-bin program dtd.exe connects to an Access database to extract the DTD file.

One can also include the DTD file into the XML file, instead of retrieving it from somewhere else.

References

[Grosof]
B. N. Grosof, Y. Labrou, H. Y. Chan, "A Declaritive Approach to Business Rules in Contracts: Courteous Logic Programs in XML".

http://www.research.ibm.com/rules/papers.html

[CIMCPM]
CIM Core Policy Model. http://www.dmtf.org/spec/Whitepapers/CIM_Policy24_wp.htm
Distributed Management Task Force.

� See appendix A

1
6

_1035714133.doc

AAA

PR

PR

AAA

PR

AAA

PR

AAA

ASM

ASM

ASM

ASM

AD boundary

AD boundary

_1037001570.doc

Lookup policy

Evaluate policy

Authenticate User

Perform accounting

Satisfy request for service

User

service request

Authorize User

<<include>>

<<include>>

<<extend>>

<<extend>>

<<include>>

policy requires authorization

policy requires authentication

Enforce policy

<<extend>>

_1035715966.doc
[image: image1.wmf](

)

4

1

2

,

,

+

+

+

j

j

j

e

e

e

a

[image: image2.wmf](

)

3

+

j

e

a

[image: image3.wmf](

)

5

+

j

e

a

[image: image4.wmf](

)

4

+

j

e

a

[image: image5.wmf](

)

1

,

+

j

j

e

e

a

A

E

C

D

B

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

_1026121675.unknown

_1026241551.unknown

_1026284402.unknown

_1028534286.unknown

_1028535076.unknown

_1028535540.unknown

_1035715971.unknown

_1035716220.unknown

_1028535142.unknown

_1028534423.unknown

_1026284622.unknown

_1026284745.unknown

_1026284521.unknown

_1026284363.unknown

_1026284377.unknown

_1026284323.unknown

_1026121933.unknown

_1026241469.unknown

_1026241492.unknown

_1026122022.unknown

_1026121775.unknown

_1026121886.unknown

_1026121698.unknown

_1025948887.unknown

_1025949313.unknown

_1026118093.unknown

_1026118140.unknown

_1025949442.unknown

_1025949101.unknown

_1025949264.unknown

_1025948942.unknown

_1025700225.unknown

_1025700613.unknown

_1025700726.unknown

_1025700528.unknown

_1025697966.unknown

_1025698260.unknown

_1025697809.unknown

_1029326491.doc
[image: image1.wmf]}

{

2

+

j

e

[image: image2.wmf]}

,

{

1

+

j

j

e

e

[image: image3.wmf]}

{

3

+

j

e

[image: image4.wmf]}

,

{

5

4

+

+

j

j

e

e

[image: image5.wmf](

)

4

3

2

,

+

+

+

j

j

j

e

e

e

r

[image: image6.wmf](

)

3

+

j

e

r

[image: image7.wmf](

)

5

+

j

e

r

[image: image8.wmf](

)

4

+

j

e

r

[image: image9.wmf](

)

1

,

+

j

j

e

e

r

A

E

C

D

� EMBED Equation.3 ���

B

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

_1026121675.unknown

_1026241551.unknown

_1026284402.unknown

_1029326523.unknown

_1029326659.unknown

_1029326761.unknown

_1029326832.unknown

_1029326578.unknown

_1026284622.unknown

_1026284745.unknown

_1026284521.unknown

_1026284363.unknown

_1026284377.unknown

_1026284323.unknown

_1026121933.unknown

_1026241469.unknown

_1026241492.unknown

_1026122022.unknown

_1026121775.unknown

_1026121886.unknown

_1026121698.unknown

_1025948887.unknown

_1025949313.unknown

_1026118093.unknown

_1026118140.unknown

_1025949442.unknown

_1025949101.unknown

_1025949264.unknown

_1025948942.unknown

_1025700225.unknown

_1025700613.unknown

_1025700726.unknown

_1025700528.unknown

_1025697966.unknown

_1025698260.unknown

_1025697809.unknown

_1032950872.doc
[image: image1.wmf]}

{

2

+

j

e

[image: image2.wmf]}

,

{

1

+

j

j

e

e

[image: image3.wmf]}

{

3

+

j

e

[image: image4.wmf]}

,

{

5

4

+

+

j

j

e

e

[image: image5.wmf](

)

4

3

2

,

+

+

+

j

j

j

e

e

e

r

[image: image6.wmf](

)

3

+

j

e

r

[image: image7.wmf](

)

5

+

j

e

r

[image: image8.wmf](

)

4

+

j

e

r

[image: image9.wmf](

)

1

,

+

j

j

e

e

r

A

E

C

D

� EMBED Equation.3 ���

B

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

Domain boundary

� EMBED Equation.3 ���

� EMBED Equation.3 ���

_1026121675.unknown

_1026241551.unknown

_1026284402.unknown

_1029326523.unknown

_1029326659.unknown

_1029326761.unknown

_1029326832.unknown

_1029326578.unknown

_1026284622.unknown

_1026284745.unknown

_1026284521.unknown

_1026284363.unknown

_1026284377.unknown

_1026284323.unknown

_1026121933.unknown

_1026241469.unknown

_1026241492.unknown

_1026122022.unknown

_1026121775.unknown

_1026121886.unknown

_1026121698.unknown

_1025948887.unknown

_1025949313.unknown

_1026118093.unknown

_1026118140.unknown

_1025949442.unknown

_1025949101.unknown

_1025949264.unknown

_1025948942.unknown

_1025700225.unknown

_1025700613.unknown

_1025700726.unknown

_1025700528.unknown

_1025697966.unknown

_1025698260.unknown

_1025697809.unknown

