Motivation

- In the near future the ICT sector is expected to contribute approx. 3% of global carbon emissions, overtaking the aviation industry.
- How to reduce the carbon footprint of the ICT sector using smart algorithms and new energy efficient technologies?
- In this demo we are looking at networking infrastructure.

Research question

- How to accomplish "green" routing with the goal of reducing overall carbon emissions?
 - How to use power data collected from the infrastructure?
 - How do networking infrastructures with different characteristics compare?
 - How do the fastest, greenest, and cheapest paths compare?
 - Are significant reductions in carbon footprint possible?

Challenges

- How to collect, store, and access power measurements of networking equipment?
 - Multi-Domain
- Ongoing work on developing software architecture to accomplish this.
 - GreenSONAR
 - Simple Lookup Service (sLS)
 - etc

Scenario

- Subset of ESnet topology.
- Uses real data collected by ESnet real-time monitoring services.
- What is the carbon footprint of transporting N GBytes from A to B?

Model

- C (grams CO2) = 8 * N * T * (sum Pi * Xi for i in Path)
 - N = GBytes you want to transport
 - T (hours) = 1 / Throughput / 3600
 - Throughput of Path in Gbits/s
 - Pi (kW) = Ps_i + Pd_i * (1 d) + Pd_i * d_i * u_i
 - Ps_i: static (unchanging) power (dwdms)
 - Pd_i: power that can vary with utilization (router)
 - d i: % of power that changes with utilization
 - u i: utilization %
 - Xi (grams CO2 / kWh) = Energy production mix
 - Depends on physical location (region)
 - Example: 40% coal, 30% nuclear, 20% hydro, 10% solar

Energy production

Energy source	CO2 emissions (grams CO2 / kWh)	
Coal	950	
Anthracite	870	
Oil	640	
Gas works gas	400	
Natural gas	380	
Nuclear	66	
Geothermal	40	
Biomass	30	
Solar	22	
Hydroelectric	15	
Wind	10	

- 1. IEA, "CO2 emissions from fuel combustion-highlights," Paris, July 2011
- 2. Benjamin K. Sovacool, "Valuing the greenhouse gas emissions from nuclear power: A critical survey," Energy Policy, vol. 36, no. 8, pp. 2950–2963, 2008.
- 3. Wikipedia, Emission Intensity

Emissions and cost per region

Region	Production mix (grams CO2 / kWh)	kWh rate (dollar cents / kWh)
Netherlands	519	31.71
NY State	250	15.66
Massachusetts	459	15.53
California	254	13.58
Maryland	571	13.11
Texas	524	10.18
Illinois	488	9.13
Georgia	611	8.76
Tennessee	537	8.66
Colorado	700	8.36
Kansas	698	8.07

^{1.} Institute of Energy Research - http://www.instituteforenergyresearch.org/states

Carbon emissions comparisons

Airplane, return trip, economy class:

- Berlin New York: 3.87 tons of CO2
- Hamburg Munich: 0.32 tons of CO2
- Frankfurt am Main Alicante: 0.85 tons of CO2

Train, return trip:

- Hamburg Munich: 0.07 tons of CO2
- Leipzig Cologne: 0.05 tons of CO2
- Stuttgart Paris: 0.01 tons of CO2

Car, per 1000 km (625 miles):

- Toyota Prius Hybrid: 0.092 tons of CO2
- Volkswagen Golf 1.6 TDI BlueMotion: 0.099 tons of CO2
- Mercedes-Benz C220 CDI BlueEfficiency: 1.17 tons of CO2

Electrical, per year:

- Lighting of a residential building: 0.135 tons of CO2
- Use of a mobile phone: 0.112 tons of CO2
- Television set: 0.025 tons of CO2

Diet, per year:

- Meat-heavy: 6.7 tons of CO2
- Vegetarian: 1.22 tons of CO2
- Vegan: 0.19 tons of CO2
- 1. http://thecompensators.org/en/compensate/examples-of-emissions/

Preliminary conclusions

- Clear differences between fastest, greenest, and cheapest paths.
- Energy saving technologies make green pathing viable.
- Lossless networks produce far less emissions than lossy networks.

More information

 UvA System and Network Engineering Group – http://sne.science.uva.nl

Energy Sciences Network – http://es.net

Email: <u>karel.vd.veldt@uva.nl</u>