OpenFlow Based VPN Prototype

INDIS WORKSHOP SC14, 16 NOVEMBER 2014, NEW ORLEANS, USA

Ronald van der Pol <Ronald.vanderPol@SURFnet.nl>

Team Members

- Ronald van der Pol (SURFnet)
- Marijke Kaat (SURFnet)
- Bart Gijsen (TNO)
- Piotr Zuraniewski (TNO)
- Daniel Cabaca Romao (UvA)

SURFnet SDN Goals for 2014

- Build nationwide SDN testbed with hardware OpenFlow switches and OpenStack mini clouds for NFV
- Look at all operational aspects of such a network (OAM, monitoring, resilience, centralised versus distributed functions)

3/23

SURF NET

- Write a "real" SDN application to get experience with network programming (what does it take?, which frameworks do exist?, which abstractions are useful? etc)
- How mature is SDN?

SURFnet Nationwide OpenFlow Testbed

- 6 Pica8 P5101 Trident II switches
- Looped multi-stage topology
- Mini OpenStack cloud at each site for NFV experiments
- OpenDaylight controlled
- Best way to slice to be investigated

Write a "Real" Network Application

- EU funded GN3plus Open Call Project (CoCo).
- http://www.geant.net/opencall/SDN/Pages/CoCo.aspx
- October 2013 March 2015 (18 months).
- Budget Eur 216K; 16.4 person months.
- Partners: SURFnet (NL) & TNO (NL) 50/50 split in effort.

5/23 SURF NET

• Five work packages:

- WP1: use cases & market demand
- WP2: architecture, design & development
- WP3: experimental validation
- WP4: dissimination
- WP5: project management

Community Connection (CoCo) Prototype

Goal of CoCo prototype:

- On-demand multi-domain, multipoint private L2/L3 network prototype.
- Intended users: closed (eScience) community groups.
- CoCo instances interconnect users, compute, storage, instruments, etc.
- Each closed eScience community group can easily setup their own private CoCo instance via web portal without the help of network engineers.
- Based on OpenFlow & OpenDaylight.

CoCo Instance

INDIS Workshop SC14, New Orleans, USA 16 November 2014

CoCo Architecture Choices

- Use as much existing code, frameworks and protocols as possible.
- Use MPLS labels for aggregation and forwarding in the core.
- Centralised agent chooses label, no label swapping within domain, no label distribution protocol needed on the data plane.
- Use BGP messages to exchange information between domains.
- Use much on the BGP MPLS VPN (RFC 4364) architecture.
- BGP only used in the control plane. BGP not used for RIB to FIB.

CoCo Control, Data and Service Planes

INDIS Workshop SC14, New Orleans, USA 16 November 2014

MPLS Forwarding

INDIS Workshop SC14, New Orleans, USA 16 November 2014

CoCo Data Plane

- Data plane forwarding based on MPLS labels
 - Outer MPLS label used to forward to destination PE switch.
 - Inner MPLS label identifies CoCo instance.
- MPLS encapsulation and decapsulation done at PE.
- At PE the customer traffic is aggregated onto MPLS paths.

CoCo Control Plane

- Control plane consists of federated CoCo agents.
- Each domain runs its own CoCo agent.

Tasks CoCo agent:

- inserts MPLS forwarding rules in the core.
- Inserts MPLS encap/decap rules in the PE switches.
- Exchanges information with neighbours via BGP peering model

• Information exchanged between CoCo agents:

- Customer IP prefixes.
- MPLS label used for CoCo instance.
- Information about end points participating in CoCo (for web portal).

CoCo architectuur, prototype & experimenten

INDIS Workshop SC14, New Orleans, USA 16 November 2014

Project Progress

- January 2014: workshop with Dutch eScientists to define uses cases
- June 2014: agreement on architecture
- September 2014: picked use case (VPNs to interconnect genome sequencers, scientists, storage and compute)
- SC14: demo first single domain prototype based on OpenDaylight

First prototype setup

INDIS Workshop SC14, New Orleans, USA 16 November 2014

1. Limitations in the OpenFlow protocol.

- We wanted to have a CE PE service port with QinQ.
- Campus/enterprise would use 1 dedicated VLAN for the CoCo service. The outer VLAN tag.
- The inner VLAN tag would be used to map to a VPN instance.
- But, OpenFlow does not have a feature to match on inner tags.

2. Limitations in hardware.

- Workaround for the previous problem is multiple tables and apply-action.
- But the Trident II (probably) does not support this.
- Some ASICs do not support MPLS (data centre vs transport ASICs).

3. Limitations of mininet/OVS

- Open vSwitch does not have full MPLS support yet.
- Port numbers in Open vSwitch are numbered consecutively; different from real switches (problem because end sites are currently statically configured)

- Pica8 software cannot match on destination IP & MPLS label
- Not possible to match on both MAC destination address and MPLS label (not confirmed yet)

Experiences with OpenDaylight

- Lots of progress in one year!
- We needed OF 1.3, and it took some time to setup an environment with mininet and Hydrogen that worked with OF 1.3.
- "Old" and "new" OpenFlow plugins and finding the correct documentation.
- Documentation (up to date!) was hard to find, improved with Helium.
- But very good support on mailing lists and IRC!
- Much has improved in Helium!
- OpenDaylight has a very nice architecture, but also a large learning curve.

Demonstration at booth #3751

Please visit our demonstration this week at the

SURF Dutch Research Consortium booth 3751 Tue 18 November 2pm: GÉANT booth 2525

More information: <u>Ronald.vanderPol@surfnet.nl</u>

http://www.geant.net/opencall/SDN/Pages/CoCo.aspx

22/23

SURF

INDIS Workshop SC14, New Orleans, USA 16 November 2014

Ronal van der Pol Ronald.vanderPol@SURFnet.nl

